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1 Motivation

Currently, research in the area of the semantic web is in a state where ontologies are ready
to applied in real applications such as semantic web portals, information retrieval or infor-
mation integration. In order to lower the effort of building ontology-based applications,
there is a clear need for a representational and computational infrastructure in terms of
general purpose tools for building, storing and accessing ontologies. A number of such
tools have been developed, i.e. ontology editors [4, 30], reasoning systems [24, 21] and
more recently storage and query systems (e.g. [7]). Most of these tools, however, tread
ontologies as monolithic entities and provide little support for specifying, storing and ac-
cessing ontologies in a modular manner. Existing proposals trying to fill this gap lack a
formal underpinning.

1.1 Why Modularization ?

There are many reasons for thinking about ontology modularization. Our work is mainly
driven by three arguments. These also bias the solution we propose, as it is aimed at
improving the current situation with respect to the following aspects.

Distributed Systems: In distributed environments like the semantic web, the question
for modularization arises naturally. Ontologies in different places are built inde-
pendent of each other and can be assumed to be highly heterogeneous. Unrestricted
referencing to concepts in a remote ontology can therefore lead to serious semantic
problems as the domain of interpretation may differ even if concepts appear to be
the same on a conceptual level. The introduction of modules with local semantics
and clearly specified interfaces can help to overcome this problem.

Large Ontologies: Modularization is not only desirable in distributed environments, it
also helps to manage very large ontologies we find for example in medicine or
biology. These ontologies that sometimes contain more than a hundred thousand
concepts are hard to maintain as changes are not contained locally but can affect
large parts of the model. Another argument for modularization in the presence of
large ontologies is reuse as in most cases, we are not interested in the complete
ontology when building a new system, but only in a specific part. Experiences from
software engineering shows that modules provide a good level of abstraction to
support maintenance and re-use.

Efficient Reasoning: A specific problem that occurs in the case of distributed ontologies
as well as very large models is the problem of efficient reasoning. While the pure
size of the ontologies causes problems in the latter case, in a distributed setting, hid-
den dependencies and cyclic references can cause serious problems in a distributed
setting. The introduction of modules with local semantics and clear interfaces will
help to analyze distributed systems and provides a basis for the development of
methods for localizing inference.
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1.2 Requirements

There are a couple of requirements, a modular ontology architecture has to fulfill in or-
der to improve ontology maintenance and reasoning in the way suggested above. The
requirements will be the main guidelines for the design of our solution proposed in this
work.

Loose Coupling: In general, we cannot assume that two ontology modules have any-
thing in common. This refers to the conceptualization as well as the specific logical
language used or the interpretation of objects, classes or relations. Our architecture
has to reflect this by providing an extremely loose coupling of modules. In espe-
cially, we have to prevent unwanted interactions between modules. For this purpose,
mappings between modules have to be distinguished from local definitions on the
semantic as well as the conceptual level.

Self-Containment: In order to facilitate the re-use of individual modules from a larger,
possibly interconnected system, we have to make sure that modules are self-contained.
In especially, the result of certain reasoning tasks such as subsumption or query an-
swering within a single module has to be possible without having to access other
modules. This is also important if we want to provide efficient reasoning. Fur-
ther we have to ensure correctness and whenever possible completeness of local
reasoning for obvious reasons.

Integrity: The advantages of having self-contained ontology modules have their price in
terms of potential inconsistencies that arise from changes in other ontology mod-
ules. While being independent from accessing other modules at reasoning time,
the correctness of reasoning within a self contained module may still depend on
knowledge in other ontologies. If this knowledge changes, reasoning results in a
self-contained module may become incorrect with respect to the overall system, and
we will not even notice it. We have to provide mechanisms for checking whether
relevant knowledge in other systems has changed and for adapting the reasoning
process if needed to ensure correctness.

1.3 Related Work

Our work relates to two main areas of research on representing and reasoning about on-
tological knowledge. The first are is concerned with distributed and modular knowledge
representation where we use ideas from theorem proving and knowledge engineering.
The second area of related work is concerned with managing knowledge models. Here
previous work exists in knowledge engineering as well and database information systems.

While the principle of modularity has widely been adopted in software engineering
it has got less attention in the area of knowledge representation and reasoning. Some
fundamental work on the modularization of representations can be found in the area of
theorem proving. Farmer and colleagues promote the use of combinations of ’Little Theo-
ries’, representations of a specific mathematical structure in order to reason about complex
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problems [16]. They show the advantages of this modular approach in terms of reusability
and reduced modelling effort. The idea of reusing and combining chunks of knowledge
rather than building knowledge bases from scratch has later been adopted by the knowl-
edge engineering community for building real-world knowledge bases (see e.g. [11]).
McIlraith and Amir argue that a modularization of knowledge bases has also advantages
for reasoning, even if the modularization is done a posteriori. They present algorithms
for breaking down existing representations into a set of modules with minimal interaction
and define reasoning procedures for propositional [1] and first-order logic [29]. The work
reported is motivated by well established techniques from uncertain reasoning, where an
a posteriori modularization of large theories is a common way to reduce runtime com-
plexity (see e.g. [27]).

As we are interested in representations of ontological knowledge, approaches from
the area of logics for representing terminologies, so-called description logics are of spe-
cial interest for our work. In this area, we find the same arguments for a modularized
representation as in the area of theorem proving. Rector proposes a strategy for modular
implementation of ontologies using description logics [31]. The approach is based on a
set of orthogonal taxonomies that provide a basis for defining more complex concepts.
Rector argues for the benefits of this strategy in terms of easier creation and reuse of on-
tological knowledge. Buchheit and others propose a similar structuring on the language
level by dividing the terminological part of a knowledge base into a schema part that cor-
responds to the basic taxonomies and a view part [8]. They show that this distinction an
be used to achieve better run-time behavior for complex view languages. While these
approaches still assume the overall model to be a single ontology providing a coherent
conceptualization of the world, Giunchiglia and others propose a more radical approach
to distributed representations. They propose the local model semantics as an extension of
the standard semantics of first order logics [19]. This semantics allows different modules
to represent different views on the same part of the world and the definition of directed
partial mappings between different modules. Recently, Borgida and Serafini defined a
distributed version of description logics based on local model semantics that has all ad-
vantages of the contextual representations [5].

The problem of combining and reasoning with ontological modules is has become
of central importance in research on knowledge representation and reasoning on the so-
called semantic web. Current proposals for languages to encode ontological knowledge
on the world wide web, i.e. the RDF schema [6] and the web ontology language OWL
[12] provide some basic mechanisms for combining modular representations. The abili-
ties for combining different models are restricted to the import of complete models and to
the use of elements from a different model in definitions by direct reference. It is assumed
that references to external statements are only made for statements from imported mod-
els, however, this is strictly speaking not required. As a consequence, mappings rather
implicitly exist in terms of mutual use of statements across models. Volz and colleagues
discuss different interpretations of the import statement that rage from purely syntactic
to schema-aware interpretations of the imported knowledge [32]. An alternative way of
relating different RDF models to each others that is much closer to our ideas is discussed
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by Oberle [34] who defines a view language for RDF and defines some consistency con-
straints for the resulting model.

1.4 Our Approach

In the following, we describe our approach to ontology modularization on an abstract
level. We emphasize the main design decisions and motivate them on the basis of the
requirements defined above. The technical details of the approach will be given in the
following sections.

View-Based Mappings: The first design decision made concerns the way, different on-
tology modules are connected. In our work, we adopt the approach of view-based
information integration. In especially, ontology modules are connected by con-
junctive queries. In especially, the extension of a concept in one module can be
claimed to be equivalent to the (intentional) answer set of a conjunctive query over
the vocabulary of another module. This way of connecting modules is more expres-
sive than simple one-to-one mappings between concept names. Further, the same
technique can be used to define relations of any arity based on other modules. Com-
pared to the use of arbitrary axioms, our approach is less expressive. We decide to
sacrifice a higher expressiveness for the sake of conceptual simplicity and desir-
able semantic properties such as directedness of the mapping. In especially, the
definition of a query mapping does not influence the interpretation of the queried
ontology.

Interface Compilation: The use of conjunctive queries guarantees a loose coupling on
a conceptual and semantic level. However, it does not provide self-containment,
because reasoning in an ontology module depends on the answer sets of the queries
used to connect it to other modules. These answer sets have to be determined by
actually querying the other ontology module. In order to make local reasoning inde-
pendent from other modules, we use a knowledge compilation approach. The idea is
to compute the result of each mapping query off-line and add the result as an axiom
to the ontology module using the result. During reasoning, these axioms replace
the query thus enabling local reasoning. As the results of queries are considered to
be defined intentionally rather than extensionally, the result of the compilation of a
query is not a set of instances retrieved from other modules, but a concept expres-
sion that contain all the information necessary to perform local reasoning. In our
case this expression is the conjunction of all concepts of the other ontology module
that subsume the query expression.

Change Detection and Automatic Update:Our approach of compiling mappings and
adding the result to the ontology models is very sensitive against changes in ontol-
ogy modules. Once a query has been compiled, the correctness of reasoning can
only be guaranteed as long as the class hierarchy of the queried ontology module
does not change. On the other hand, not every change in the hierarchy does really
influence the compiled result. Problems only arise if concepts used in the query
change or if the set of classes subsuming the query is changed. In the second case,
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we will have to compile the interface again. In the first case we might even have
to consider a redefinition of the query. In order to decide, whether the compiled
axiom is still valid, we propose a change detection mechanism that is based on a
taxonomy of ontological changes and their impact of the class hierarchy in combi-
nation with the position of the affected class in that hierarchy. We further exploit
an explicit representation of the dependencies between ontology modules in order
to propagate changes in the system when necessary.

2 Modular Ontologies

In order to put a higher level modularization infrastructure for ontologies into place, ex-
tensions of existing technologies are necessary at different levels. On the syntactic level,
we have to extend existing language standards like OWL with a language for defining
module interfaces and mappings between different modules. On the semantic level, we
have to define the interpretation of mappings as well as the relation between definitions in
different modules in such a way that we achieve independence between modules. In this
section we will present a framework for representing modular ontologies. In section 2.1
we define a syntax for representing modular ontologies and provide an intuitive descrip-
tion of its meaning. Section 2.2 underpins the syntax with a model-theoretic semantics
for modular ontologies that uses the notion of a distributed interpretation across differ-
ent abstract domains to define an novel notion of logical consequence that better fits the
intuition of distributed models than the standard notion used by languages like OWL.

2.1 Syntax and Architecture

Before we turn our attention to modularized ontologies, we first clarify our view on on-
tologies by giving some basic definitions of models of ontological knowledge and their
semantics.

2.1.1 Ontological Knowledge

A number of languages for encoding ontologies on the Web have been proposed (see [20]
for an overview). In order to get a general notion of ontological knowledge, we define
the general structure of a terminological knowledge base (ontology) and its instantiation
independent of a concrete language.

Definition 1 (Terminological Knowledge Base)A Terminological Knowledge BaseT
is a triple

T = 〈C ,R ,O〉

whereC is a set of class definitions,R is a set of relation definitions andO is a set of
object definitions.

Terminological knowledge usually groups objects of the world that have certain prop-
erties in common (e.g. cities or countries). A description of the shared properties is called
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a class definition. Concepts can be arranged into a subclass-superclass relation in order
to be able to further discriminate objects into sub-groups (e.g. capitals or European coun-
tries). Classes can be defined in two ways, by enumeration of its members or by stating
that it is a refinement of a complex logical expressions. The specific logical operators to
express such logical definitions can vary between ontology languages; the general defini-
tions we give here abstract from these specific operators.

Definition 2 (Class Definitions) A class definition is an axiom of one of the following
forms:

• c≡ (o1, · · · ,on) where c is a class definition and o1, · · · ,on are object definitions.

• c1 v c2 where c1 and c2 are class definitions.

Further, there is the universal class denoted as>.

Objects of the same type normally occur in similar situations where they have a cer-
tain relation to each other (cities lie in countries, countries have a capital). These typical
relations can often be specified in order to establish structures between classes. Termino-
logical knowledge considers binary relations that can either be defined by restricting their
domain and range or by declaring it to be a sub-relation of an existing one.

Definition 3 (Relation Definitions) A relation definition is an axiom of one of the fol-
lowing forms:

• r v (c1,c2) where r is a role definition and c1 and c2 are class definitions.

• r1 v r2 where r1 and r2 are role definitions.

The universal role is defined as>×>.

Sometimes single objects (e.g. the continent Europe) play a prominent role in a do-
main of interest, or the membership of a concept is defined by the relation to a specific
object (European countries are those contained in Europe). For this purpose ontology
languages often allow to specify single objects, also called instances. In our view on ter-
minological knowledge, instances can be defined by stating their membership in a class.
Further, we can define instances of binary relations by stating that two objects form such
a pair.

Definition 4 (Object Definitions) An object definition is an axiom of one of the following
forms:

• o : c where c is a class definition and o is an individual.

• (o1,o2) : r where r is a relation definition and o1,o2 are object definitions.

In the following, we will consider terminological knowledge bases that consist of
such axioms. Of course, any specific ontology language will have to further instantiate
these definitions to specify logical operators between classes etc, but for the purposes of
this paper, these general definitions are sufficient. Further, we define the signature of a
terminological knowledge base to be a triple〈CN ,R N ,I N 〉, whereCN is the set of
all names of classes defined inC , R N the set of all relation names andI N the set of all
object names occurring in the knowledge base.
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2.1.2 Internal and External Definitions

The notion of ontology and query given above is a quite standard ones. What makes up a
modular ontology now, is the possibility to use ontology-based queries in order to define
concepts in one module in terms of a query over another module. For this purpose, we
divide the set of concepts in a module into internally defined conceptsCI and externally
defined conceptsCE resulting into the following definition ofC :

C = CI ∪CE, CI ∩CE = /0 (1)

Internally defined concepts are specified by using concept expressions in the spirit of
description logics [2]. We do not require a particular logic to be used.

Definition 5 (Internal Concept Definition) An internal concept definition is an axiom of
one of the following forms Cv D,C≡D where C∈ CN and D is a concept expression of
the form f(t1, · · · , tn) where the terms ti are either concept names or concept expressions
and f is an n-ary concept building operator.

Besides this standard way of defining concepts, we consider externally defined con-
cepts that are assumed to be equivalent to the result of a query posed to another module
in the modular ontology.

Definition 6 (Terminological Queries) Let V be a set of variables disjoint fromI N then
an terminological query Q over a knowledge baseT is an expressions of the form

q1i ∧·· ·∧qmi

where qi are query terms of the form x: c or (x,y) : r such that x,y∈V ∪ I N , C∈ CN
and R∈ R N .

This way of connecting modules is very much in spirit of view-based information in-
tegration which is standard technique in the area of database systems [22]. The choice
of conjunctive queries for connecting different modules is motivated by the trade-off be-
tween expressiveness of the mapping and conceptual as well as computational simplicity.
Our approach is more expressive than simple one-to-one mappings; having more complex
mappings would contradict the principle of loose coupling of different modules. We now
use the notion of ontology based query in order to define concepts using queries over a
different ontology (module) that have exactly one free variable.

Definition 7 (External Concept Definition) An external concept definition is an axiom
of the form: C≡ M : Q Where M is a module and Q is an ontology-based query over the
signature of M with exactly one free variable.

Further, we allow relations to be defined in terms of query expressions with two free
variables. By convention, we call these variablesx andy wherex always denotes the vari-
able in the first andy the variable in the second place of the binary relation. Analogously
to external concept definitions, we get the following definition for externally defined re-
lationsRE
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Definition 8 (External Relation Definition) An external relation definition is an axiom
of the form: R≡ M : Q Where M is a module and Q is an ontology-based query over the
signature of M with exactly two free variable.

A modular ontology is now simply defined as a set of modules that are connected
by external concept and relation definitions definitions. In particular we require that all
external definitions are contained in the modular system.

Definition 9 (Modular Ontology) A modular ontologyM = {M1, · · · ,Mm} is a set of
modules such that for each externally defined concept C≡Mi : Q and each external rela-
tion defintion R≡Mi : Q Mi is also a member ofM .

We will use this notion of a modular ontology in the following to investigate the
problem of integrity of logical reasoning across modules.

2.2 Semantics and Logical Consequence

After having defined a representation syntax for modular ontologies, we now have to de-
fine how a modular ontology should be interpreted. Such a semantic underpinning in
necessary to define the notion of logical consequence which serves as a basis for any kind
of reasoning. Further, having a formal semantics makes it easier to compare our model to
existing proposals for ontologies on the web as well as to investigate the formal properties
of the kind of mapping relations chosen.

When defining the semantics of our model, we have to find a trade-off between back-
ward compatibility with existing standards and new ways of defining logical semantics
that better fit the distributed nature of a modular ontology. In order to meet both require-
ments, we define a local semantics that applies to individual modules and a distributed
semantics that defines how the relations between elements in different modules are in-
terpreted. The local semantics directly corresponds to the Tarskian style semantics of
description logics and is therefore very close to the semantics of OWL-DL which can be
seen as a special kind of description logics. The distributed semantics borrows from the
notion of distributed first order logics and more specifically distributed description logics
defining the interaction between different local models referring to the local semantics.

2.2.1 Local Semantics

We can define semantics and logical consequence of a terminological knowledge base
using an interpretation mapping.ℑ into an abstract domain∆ such that:

• cℑ ⊆ ∆ for all class definitionsc in the way defined above

• rℑ ⊆ ∆×∆ for all relation definitionr

• oℑ ∈ ∆ for all object definitionso

8
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This type of denotational semantics is inspired by description logics [13], however,
we are not specific about operators that can be used to build class definitions which are
of central interest of these logics. Using the interpretation mapping, we can define the
notion of a model in the following way:

Definition 10 (Model of a Terminological Knowledge Base)An interpretationℑ is a
model for the knowledge baseT if ℑ |= A for every axiom A∈ (C ∪R ∪O) where|=
is defined as follows.

• ℑ |= c≡ (o1, · · · ,on), iff cℑ = {oℑ
1 , · · · ,oℑ

n}

• ℑ |= c1 v c2, iff cℑ
1 ⊆ cℑ

2

• ℑ |= r v (c1,c2), iff rℑ ⊆ cℑ
1 ×cℑ

2

• ℑ |= r1 v r2, iff rℑ
1 ⊆ rℑ

2

• ℑ |= o : c, iff oℑ ∈ cℑ

• ℑ |= (o1,o2) : r, iff (oℑ
1 ,oℑ

2 ) ∈ rℑ

These definitions enable us to perform reasoning using the notion of logical conse-
quence:

Definition 11 (Logical Consequence)An axiom A logically follows from a set of axioms
S if ℑ |= S impliesℑ |= A for every modelℑ. We denote this fact byS |= A.

The fact that all conjuncts relate to elements of the ontology allows us to determine
the answer to terminological queries in terms of instantiations of the query that are logical
consequences of the knowledge base it refers to:

Definition 12 (Query Answers (Halevy 2001))The answer of a query Q containing vari-
ables v1, · · · ,vk over a knowledge base T is a set of tuples(i1, · · · , ik) such that T|= Q′

where Q′ is the query obtained from Q by substituting v1, · · · ,vk by i1, · · · , ik. The projec-
tions of the answer tuples to variables occurring in the head of a query Q is denoted as
res(Q) and referred to as the answer set of Q.

The computation of query answers in the sense being defined above is the main in-
ference task of peers within a system. In the next section we will discuss a logically
well-founded approach for computing such answers.

As our goal is to ensure the integrity of distributed ontologies with respect to logical
reasoning, the notion of logical consequence is a central one that will be used to estab-
lish our technical results. In especially, we use the notions of implied subsumption and
membership:

Definition 13 (Subsumption and Membership) Let 〈∆, .ℑ〉 be a structure with domain
∆ and interpretation.ℑ such that Cℑ ⊆ ∆ for every C∈ CN O, Rℑ ⊆ ∆× ∆ for every
R∈ R N O and Iℑ ∈ ∆ for every I∈ I N .
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• An instance a is said to be member of a concept C, denoted as a: C iff T |= Iℑ ∈Cℑ

• A pair of instances(a,b) is said to be member of a Relation R, denoted as(a,b) : R
iff T |= (aℑ,bℑ) ∈ Rℑ.

• A concept C is subsumed by another concept D, denoted as CvD iff T |=Cℑ ⊆Dℑ.

Analogously, we can define the notion of subsumption between queries in terms of
the subset relation between their result sets:

Definition 14 (Query Subsumption) LetT = 〈C ,R ,O〉 and Q1,Q2 conjunctive queries
over T . Q1 is said to be subsumed be another query Q2 denoted by Q1 v Q2 if for all
possible sets of object definitions of a terminological knowledge base the answers for Q1

is a subset of the answers for Q2 : (∀O : {t|T |= Q1(t)} ⊆ {t|T |= Q2t}

2.2.2 Global Semantics

We define a model-based semantics for modular ontologies using the notion of a dis-
tributed interpretation proposed by [5] in the context of distributed description logics:

Definition 15 (Distributed Interpretation) A distributed interpretationℑ = 〈{ℑi}i∈Index, r〉
of a modular ontologyM consists of interpretationsℑi for the individual module Mi over
domains∆i , such that:

• Cℑ
i ⊆ ∆i for all concept definitions C∈ Ci

• Rℑ
i ⊆ ∆i ×∆i for all relation definition R∈ Ri

• Oℑ
i ∈ ∆i for all object definitions O∈ Oi

and function bk associating to each pair of indices i, j binary relations bki j ⊆ ∆k
i ×∆k

j .

bk
i j (d) denotes the set{d′ ∈∆k

j |(d,d′)∈bk
i j}; for every D⊆∆k

i bk
i j (D) denotes

⋃
d∈D bk

i j (d).

The assumption of disjoint interpretation domains again reflects the principle of loose
coupling underlying our approach. Based on the notion of a distributed interpretation we
can define a model of a modular ontology as an interpretation that satisfies the constraints
imposed by internal and external concept definitions. In contrast to [5], we do not in-
troduce special operators for defining the relations between different domains, we rather
interpret external concept definitions as constraints on the relation between the domains:

Definition 16 (Logical Consequence)A distributed interpretationℑ is a model for a
modular ontologyM if for every module Mi we haveℑ |= X for every concept or re-
lation definition X in Mi where|= is defined using definition 10 for internal definitions
and the following equations:

• ℑ |= C≡M j : Q, iff Cℑi = b1
ji (Q

ℑ j ).

• ℑ |= R≡M j : Q, iff Rℑi = b2
ji (Q

ℑ j ).

10
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Here Qℑ j denotes the interpretation of the set of answers to query Q. An axiom A logically
follows from a set of axiomsS if ℑ |= S impliesℑ |= A for every modelℑ. We denote this
fact byS |= A.

The actual definitions of concepts impose further constraints on the interpretation of
a modular ontology. For the case of internally defined concepts, these constraints are
provided by the definition of concept building operators of description logics. For the case
of externally defined concepts, the situation is more complicated and will be discussed in
more details in the next section.

3 Expressiveness of the Model

Different from the mainstream work on distributed ontology definitions, our approach
uses a mapping language that is different from the logical language used to specify the
local ontologies themselves. In particular, we use conjunctive queries over concepts and
binary relations. At first glance this seems to be a serious restriction of the expressiveness
of our language as mappings contain no negation, disjunction or other terminological
operators. A careful investigation of the semantics of our model, however, reveals that
the use of conjunctive queries actually leads to a higher expressiveness as opposed to the
standard approach of linking ontologies by directly referring to elements of remote models
in a local specification (compare [12]). In this section we show that the direct reference
scheme used in languages like OWL can be simulated using a trivial mapping scheme,
further we argue that our model is more expressive than the direct use of elements, because
it allows to specify relations in terms of complex expressions. Finally, we sketch how our
model can be extended in a straightforward way to also capture relations of arbitrary arity.

3.1 Resembling OWL Import

Aiming at the semantic web, the langauge we have to compare ourselves to is the Web
Ontology Langauge OWL. In the current proposals for OWL, the notion of mapping is
not explicitly contained in the language. The abilities for combining different models
are restricted to the import of complete models and to the use of elements from a dif-
ferent model in definitions by direct reference. It is assumed that references to external
statements are only made for statements from imported models, however, this is strictly
speaking not required. As a consequence, mappings rather implicitly exist in terms of
mutual use of statements across models. While being quite simple, this way of connect-
ing ontologies is quite flexible and allows for complex arrangements of elements from
different models into one expression. In this section, we show that this ability can easily
be resembled using our model using examples from the OWL language guide. The basic
idea is the following: we create a local copyC of each external conceptE involved using
a trivial mapping of the formC(X)≡ M : E(X) and then combine these local copies in a
complex definition using OWL class building operators.
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3.1.1 Simple References

The most basic kind of reference to other ontologies mentioned in the OWL documenta-
tion is to state the equivalence of two classes using theowl:equivalentClass statement.
The following example is taken from the OWL langauge guide:

<owl:Class rdf:ID="Wine">
<owl:equivalentClass rdf:resource="&vin;Wine"/>

</owl:Class>

Assuming that the external ontology, described by the prefixvin is imported by the
local ontology, this statements claims that the extension of the two concepts are actually
the same. We can model this constraint on the interpretation of the local ontology using
the following trivial definition of the external concept Wine:

Wine(X)≡Mvin : Wine(X)

In this case, we could directly encode the OWL reference mechanism in terms of our
model. Having restricted the definitions of external concepts to equivalence statements,
however, we cannot directly encode the weakersubclassOf relation to external concepts
like the one in the example below:

<owl:Class rdf:ID="WineGrape">
<rdfs:subClassOf rdf:resource="&food;Grape" />

</owl:Class>

At this point, we have to apply the modelling trick mentioned above: We create a local
copy of the concept ’Grape’ using the same trivial mapping as above and declare the local
concept ’WineGrape’ to be a subclass of this local copy:

C ≡ M f ood : Grape(X)
WineGrape(X) v C (2)

3.1.2 Combining Internal and External Definitions

The simple strategy of creating local copies of external concepts allows us to easily com-
bine external and local definitions into more complex concepts. Again, we use an example
from the OWL language guide, where Wine is defined as a subclass of the intersection of
potable liquids and things made from grapes. Here, potable liquids are defined elsewhere,
whereas the restricted relation ’madeOfGrapes’ is contained in the local ontology:

<owl:Class rdf:ID="Wine">
<rdfs:subClassOf rdf:resource="&food;PotableLiquid" />
<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#madeFromGrape"/>
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<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">
1
</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>

Using the same strategy as before, we create a copy of the externally defined concept
’potatbleLiquid’. Using this copy, we simply define the concept Wine locally using the
Description logic counterparts of the OWL operations used in the example:

C(X) ≡ M f ood : PotableLiquid(X)
Wine v Cu (≤ 1 madeFromGrape) (3)

3.1.3 Complex External References

The ability to make complex assertions about local copies from (maybe different) models
also helps us to overcome the restricted expressiveness of our mapping language. Having
restricted external definitions to conjunctive queries, we cannot directly express conjunc-
tions or negation in the definitions. However, we can used disjunction, negation and other
OWL operators locally in order to define complex concepts on the basis of local copies of
concepts from other ontologies. In order to illustrate this possibility, we use the following
concept definition that uses concepts from three different external models:

<owl:Class rdf:ID="LiquidPoison">
<rdfs:subClassOf>
<owl:Class rdf:resource="&physics;LiquidSubstance"/>
<owl:Class>

<owl:unionOf rdf:parseType="owl:collection">
<owl:Class rdf:resource="&medicine;Drug"/>
<owl:Class>

<owl:completementOf rdf:resource="&food;PotableLiquid"/>
</owl:Class>

</owl:unionOf>
</owl:Class>

</rdfs:subClassOf>
</owl:Class>

In order to directly capture this definition in terms of an external concept definition,
the mapping language would have to contain disjunction (for expressingowl:unionOf
and negation (for expressingowl:complementOf). Instead, we resemble can the above
concept expression in the following way that leads us to an internal concept expression
with the same meaning as the example above.

C1(X) ≡ Mphysics: LiquidSubstance(X)
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C2(X) ≡ Mmedicine: Drug(X)
C3(X) ≡ M f ood : PotableLiquid(X)

LiquidPoison v C1u (C2t¬C3) (4)

3.1.4 Relation Definitions

Concerning the definition of Relations, the abilities of OWL are quite limited. Most of
the assertions that can be made about relations do not depend on other elements of the
ontologies but solely address the mathematical properties of a relation (such as transi-
tivity or functionality). The only assertions than can be made about a relations and its
dependence on elements from other ontologies areowl:inverseOf as well as domain
and range restrictions. A slightly modified example from the OWL documentation is the
following:

<owl:ObjectProperty rdf:ID="madeFromGrape">
<owl:inverseOf rdf:resource="&wine;usedFor"/>
<rdfs:domain rdf:resource="&wine;Wine"/>
<rdfs:range rdf:resource="&wine;WineGrape"/>

</owl:ObjectProperty>

In order to capture this definition in our mapping framework, we can combine the
direct use of our mapping language and the use of local copies. Defining a relation to be
the inverse of an external one can directly be done using a mapping query and inverting
the order of the return variables:

madeFromGrapes(X,Y)≡Mwine : usedFor(Y,X) (5)

For the domain and range restrictions, we create local copies and define the relation to
range over these local copies (compare section on axioms for defining ontological knowl-
edge). As both kinds of restrictions, the mapping on the inverse of an external relation
and the restriction local restriction of the domain and range apply to the definition of the
’madeFromGrape’ relation, the semantics of its definition is the same as for the example
definition.

C1(X) ≡ Mwine : Wine(X)
C2(X) ≡ Mwine : WineGrape(X)

madeFromGrapesv (C1×C2) (6)

3.2 Beyond OWL

The examples given above raise the questions for the advantages of a mapping language
based on conjunctive queries. In this section, we argue that our mapping language extents
the expressiveness of existing ontology languages that are solely based on description
logics and in particular OWL by adding more possibilities for defining properties. In
contrast to existing approaches for combining description logics with rule languages such
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as [28] or [15], our approach only allows to use rules in a very specific way, namely to
define relations between disjoint interpretation domains and does therefore not suffer from
the technical problems of many other approaches. As a consequence, we can allow for
complex terminological definitions such as the ones described above. In addition, we can
define local relations by complex expressions over predicates in another model. Examples
of such definitions that go beyond the expressiveness of OWL are given below.

3.2.1 Combining Relations

The major advance of our approach over the abilities of OWL is the possibility to inten-
tionally define relations using concepts, relations and also instances of a remote model.
Based on these definitions, our model allows to derive subsumption relations between
externally defined relations (see definition 14) while OWL only allows to explicitly state
subsumption relations between relations and use them to derive subsumption between re-
lations. The example below describes the relation between employees and the companies
they were employed by in a particular year:

employedIn2003(X,Y) ≡ M : employmentContract(Z)∧employee(Z,X)
∧year(Z,2003)∧employer(Z,Y) (7)

If we now consider the more general relation of legal partners defined by the more gen-
eral concepts of contract and beneficiary without reference to a particular year. Assuming
that the modelM provides the corresponding background knowledgeemploymentContractv
contract, employeev bene f iciaryandemployerv bene f iciarywe can, based on the no-
tion of logical consequence derive that the following relation subsumes the one described
above:

legalpartner(X,Y)≡M : contract(Z)∧bene f iciary(Z,X)∧bene f iciary(Z,Y) (8)

3.2.2 N-ary Relations

A more ambitions extension to OWL expressiveness, that is supported by our model
(though it is not worked out in this paper) is the ability to express relations of an arbi-
trary arity. This is supported by the mapping language as well as the formal semantics
of our approach. In our model, an n-ary relation can be defined using a query expression
with n free variables. An example for a tertiary relation that connects an employee with
his or her employer depending on a certain year is given below:

employed(X,P,Y) ≡ M : employmentContract(Z)∧bene f iciary(Z,X)
∧year(Z,P)∧employer(Z,Y) (9)

On the semantic level, relations of higher arity are supported by the use of the relations
bk

i j that connect the different interpretation domains. Up to now we are only using these
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relations with the arity parameterk set to 1 for concepts and 2 for relations. The semanics
of the tertiary relation above can be defined using the relationb3

i j . Reasoning about these
relations is equivalent to the problem of query containment under constraints which is
known to be decidable for many interesting cases [10].

4 Reasoning in Modular Ontologies

Using the notion of logical consequence defined above, we now turn our attention to the
issue of reasoning in modular ontologies. For the sake of simplicity, we only consider
the interaction between two modules in order to clarify the basic principles. Further, we
assume that only one of the two modules contains externally defined concepts in terms of
queries to the other module. As mentioned in the introduction, we are interested in the
possibility of performing local reasoning. For the case of ontological reasoning, we focus
on the task of deriving implied subsumption relations between concepts within a single
module. For the case of internally defined concepts this can be done using well estab-
lished reasoning methods [14]. Externally defined concepts, however, cause problems:
being defined in terms of a query to the other module, a local reasoning procedure will
often fail to recognize an implied subsumption relation between these concepts. Con-
sequently, subsumption between externally defined concepts requires reasoning in the
external module as the following theorem shows. We define the notion of implied sub-
sumption starting with subsumption between atomic concepts before extending the results
to arbitrarily complex concept expressions

4.1 Atomic Concepts and Relations

The most simple case of implied subsumption is the case where we want to decide whether
two externally defined concepts subsume each other. Assuming that these concepts are
solely defined in terms of their mapping to another ontology, we can define when these
concepts subsume each other on the basis of query subsumption in the external ontology:

Theorem 1 (Implied Subsumption) Let E1 and E2 be two concepts (or relations) in
module Mi that are externally defined in module Mj by queries Q1 and Q2, thenℑ |=
E1 v E2 if ℑ j |= Q1 vQ2.

Proof 1 For a∈ {1,2} he have:

ℑ j |= Q1 vQ2 ⇒ Q
ℑ j
1 ⊆Q

ℑ j
1

⇒ ba
ji (Q

ℑ j
1 )⊆ ba

ji (Q
ℑ j
1 )

⇒ Eℑi
1 ⊆ Eℑi

1

⇒ ℑ |= E1 v E2 (10)

The result presented above implies the necessity to decide subsumption between con-
junctive queries in order to identify implied subsumption relations between externally
defined concepts. In order to decide subsumption between queries, we translate them into
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internally defined concepts in the module they refer to. A corresponding sound and com-
plete translation is described in [25]. Using the resulting concept definition, to which we
refer asquery concepts, we can decide subsumption between externally defined concepts
by local reasoning in the external ontology.

4.2 Preservation of Boolean Operators

Things become a bit more complicated when we consider the case where externally de-
fined concepts are further used to define complex concepts. What is needed is a general
result on the preservation of subsumption relationships between concept expressions in
different modules that are defined in the same way. In the following we will call these
expressions isomorphic.

Definition 17 (Isomorphic Concepts) Let i :C and j: D be two concepts defined in mod-
ules Mi and Mj respectively, then i: C and i: D are said to be isomorphic if

1. i : C(x) = M j : D(x) or

2. i : C≡ f (E1, ...,En), j : D≡ f (F1, ...,Fn), Ei and Fi are isomorphic

We formulate the following hypothesis about isomorphic concepts: For every pair of
isomorphic conceptsC andD we have

Cℑi = b1
ji (D

ℑ
i ) (11)

We try to prove the hypothesis by induction over the definition of isomorphic concepts.
The induction hypothesis is directly established by definition 16. We therefore consider

case 2 in definition 17. From the induction hypothesis, we know thatEℑi
i = b1

ji (F
ℑ j
j ). As

Cℑi = b1
ji (D

ℑ
i )⇐Cℑi = b1

ji ( f (F1, ....Fn)ℑ j )

in order to prove the lemma we have to show thatb1
ji distributes overf , in particular, that:

b1
ji ( f (F1, ...,Fn)ℑ j ) = f (b1

ji (F
ℑ j
1 ), ...,b1

ji (F
ℑ j
n ))ℑi

Because in this case, we can use the induction hypothesis to replace the arguments off

resulting in:Cℑi = f (Eℑ j
i , ...,E

ℑ j
n )ℑi Which directly follows from the definition.

We investigate above statement with respect to the boolean operators over class names.
For the sake of readability, we useb instead ofb1

ji to denote the semantic relation between
M j andMi .
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Disjunction Conjunction is defined in terms of the union of the extensions of concepts.
We have to show that:b(Cℑ j ∪Dℑ j ) = b(Cℑ j )∪b(Dℑ j ).

(⊆) for each elementx∈ b(Cℑ∪Dℑ) there is an elementy∈ (Cℑ∪Dℑ) with b(y,x).
For thisy we know that eithery∈Cℑ or y∈Cℑ. As b is defined fory, we also have an
objectx′ with b(y,x′) and eitherx′ ∈ b(Cℑ j ) or x′ = b(Dℑ j ) and thereforex′ ∈ b(Cℑ∪Dℑ).
What is left to be shown is thatx′ = x. This actually is only given idb is a function which
we have to take as a premise.

(⊇) For each elementx∈ b(Cℑ)∪b(Cℑ) we know thatx∈ b(Cℑ) or x∈ b(Dℑ). There-
fore there is an elementy with b(y,x) and eithery ∈ Cℑ or y ∈ Dℑ. We conclude that
y∈ (Cℑ∪Dℑ). Asb is defined fory there is an elementx′ with b(y,x′) andx′ ∈ b(Cℑ∪Dℑ).
As above what is left to be shown isx = x′ which is the case ifb is a function.

Conjunction Conjunction is defined in terms of the intersection of the extensions of
concepts. We have to show that:b(Cℑ j ∩Dℑ j ) = b(Cℑ j )∩b(Dℑ j ).

(⊆) For each elementx∈ b(Cℑ∩Dℑ) there is an elementy∈ (Cℑ∩Dℑ) with b(y,x).
For thisy we know thaty∈Cℑ andy∈ Dℑ. We conclude (as b is defined fory) that there
is anx′ with b(y,x′) andx′ ∈ b(Cℑ)∩b(Cℑ). What is left to be shown is thatx′ = x. This
actually is only given idb is a function which we have to take as a premise.

(⊇) For each elementx ∈ b(Cℑ)∩ b(Cℑ) we know thatx ∈ b(Cℑ) and x ∈ b(Dℑ).
Therefore, there are elementsy1,y2 with y1 ∈Cℑ,b(y,x) andy2 ∈ Dℑ,b(y′,x). What we
are looking for is an elementy with y∈ (Cℑ∩Dℑ),b(y,x). In this case we could use the
same argument as above to show that the subset equation holds ifb is a function. Actually,
he have such an elementy if we could show thaty1 = y2. This is actually the case ifb is
an injective function which is another premise.

Negation OWL uses negation in terms of theowl:complementOf operator. Its seman-
tics is defined in terms of set complement with respect to the domain of interpretation, i.e.
(¬C)ℑi = ∆i −Cℑi . We have to show thatb(∆ j −Cℑ) = ∆i −b(Cℑ).

(⊆) For everyx ∈ b(∆ j −Cℑ) we know that there is an elementy with b(y,x) and
y 6∈Cℑ. As we know thatb is defined fory, there is anx′ with b(y,x′). Two things need
to shown for thisx′. That it is not inb(Cℑ) and thatx = x′. The latter is given ifb is a
function. The former can be guaranteed ifb is injective since for each elementx′′ ∈ b(Cℑ)
there is an elementy′ ∈Cℑ. From the injectivity ofb it would follow thaty′ = y which
results in a conflict as we know thaty 6∈Cℑ.

(⊇) Let x∈ ∆i −b(Cℑ). We assume that there is an elementy with b(y,x) andy 6∈Cℑ.
We assume thaty∈Cℑ. Therefore there exists an elementx′ with x′ ∈ b(Cℑ). For the case
thatb is functional, we can derive a conflict, because in this casex = x′ andx 6∈ b(Cℑ). If
follows thaty∈ ∆ j −Cℑ. As b is defined fory there is an elementx′′ with b(y,x′′) such
hatx′′ ∈ b(∆ j −Cℑ). Again, if b is functional, we havex= x′′ which establishes the result
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under the assumption that we can find a suitabley. This, however, can only be guaranteed
if b is also surjective, as otherwise it might be the case thatx is not in the image ofb.
Summarizing, we can say that the set inclusion only holds ifb is a bijective function.

4.3 Intuition and Implications for Inter-Module Reasoning

We can use the results about the semantic relation between the extensions of isomorphic
concepts we presented above in order to extend theorem 1. While the theorem only makes
assertions about concepts that are directly defined by external mappings, we saw above
that under certain assumptions there is also a semantic connection between concepts that
are not directly connected but built from other connected concepts (see equation 11). The
table below summarizes these results:

b1
ji Atomic Concepts Disjunction Conjunction Negation

relation X
function X X
injective function X X X
bijective function X X X X

We see that there is a semantic relation between isomorphic concepts defined using
only disjunction is provided if the semantic mapping is functional. If conjunction is used
as well, the semantic mapping has to be an injective function in order to guarantee that
a semantic relation exists between isomorphic concepts. If negation is used to define
concepts, only a semantic mapping which is a bijective function implies equation 11.
Based on this observation, we formulate the following extension of theorem 1

Theorem 2 (Implied Subsumption (extended))Let E1 and E2 be two concepts in mod-
ule Mi and ℑi 6|= E1 v E2. Let further be F2andF2 be concepts in module Mj with
ℑ j |= F1 v F2. We haveℑ |= E1 v E2 if:

1. Theorem 1 applies.

2. E1,F1 and E2,F2 are isomorphic, b1ji is a function and only disjunction is used to
define concepts

3. E1,F1 and E2,F2 are isomorphic, b1ji is an injective function and only disjunction
and conjunction are used to define concepts.

4. E1,F1 and E2,F2 are isomorphic, b1ji is a bijective function and only disjunction,
conjunction and negation are used to define concepts.

Proof 2 (Sketch) The theorem is proven in the same way as theorem 1 where the third
step of the derivation is justified by equation 11 which has been shown in the last section.

The crucial question connected to these technical results is about the suitability of the
assumptions we make about the semantic relation. In order to get an idea about these
assumptions, we will take a look at the formal properties of the semantic relation and
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discuss the intuition connected with these properties.

In the most general case,b ji is just a general relation with no further restrictions. As
a result it provide a high flexibility with respect to the links that exist between modules.
This general relation allows for example to connect models with different levels of gran-
ularity as one element in the domain one module may correspond to several elements of
the domain of the other module. This flexibility leads to a very loose coupling of different
modules as no operators are preserved. In principle, we only know connections between
modules that are explicitly stated. This changes when we assume that the semantic re-
lation is functional. In this case every element in the domain ofMi only corresponds to
exactly one element inMi . This means that the goal module is at least as fine grained
(or exact) as the target. Still it can be the case that the target is an abstraction, because
more than one element of the goal domain correspond to one element in the target do-
main. Choosing an injectiveb ji that establishes a one-to-one mapping between elements
of different domains means that we only allow domains of the same level of abstraction.
While being at the same level of detail, an injective semantic relation does not restrict the
coverages of the two domains. They may overlap because we neither requireb j i to be
non-partial nor do we assume that it covers all of the target domain. The latter is required
if we want to preserve negation. In a logic where negation is defined by set difference
wrt. to the complete domain it is clear that negation will only have the same effect if the
domains are comparable which is only given in case of a bijectiveb j i.

From a practical point of view, some of the assumption are more likely to hold for
modular ontologies than other. While we can often assume that different modules are at
the same level of abstraction, their coverage may vary as sometimes one module will just
be a different view on exactly the same set of objects an sometimes they will cover com-
pletely different aspects of a domain being only related by a few concepts. Therefore, we
think that defining the semantic relation to be an injective function is a good compromise
between flexibility of coupling and preservation of operator semantics.

4.4 Compilation and Integrity

The bottomline of the investigations above is that in order to completely determine the
subsumption relations in an ontology module that contains externally defined concepts,
we might also have to perform subsumption reasoning in the modules the external con-
cepts are mapped to. This fact contradicts the requirement of local reasoning stated in the
motivation as subsumption reasoning in the external module may in turn require reasoning
in modules this one is linked to an so on. In order to reach the goal of local reasoning, we
therefore have to find a way to avoid the need to look beyond the the border of a module
at run time.

We can avoid the need to perform reasoning in external modules each time we per-
form reasoning in a local module using the idea of knowledge compilation [9]. The idea
of compilation is to perform the external reasoning once and add the derived subsumption
relations as axioms to the local module. These new axioms can then be used for reason-
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ing instead of the external definitions of concepts. This set of additional axioms can be
computed using Algorithm 1.

Algorithm 1 Compile
Require: the moduleM = 〈CI ∪CE,R,O〉
Require: the external moduleM j = 〈Cj ,Rj ,O j〉

for all E ≡M j : Q∈CE do
C′

E := C′
E∪{E vC|C∈Cj ,ℑ j |= E vQ}

end for
return C′

E

If we want to use the compiled axioms instead of external definitions, we have to
make sure that this will not invalidate the correctness of reasoning results. We call this
situation, where the compiled results are correct as integrity. We formally define integrity
as follows:

Definition 18 (Integrity) We consider integrity of two ontology modules M,M j to be
present if M,M j |= Mc where Mc is the result of replacing the set of external concept
definitions in M by compile(M,M j).

At the time of applying the compilation this is guaranteed by theorem 1, however,
integrity cannot be guaranteed over the complete life-cycle of the modular ontology. The
problem is, that changes to the external ontology module can invalidate the compiled
subsumption relationships. In this case, we have to perform an update of the compiled
knowledge. This problem is discussed in more details in the next section.

5 Evolution Management

In principle, testing integrity might be very costly as it requires reasoning within the ex-
ternal ontology. In order to avoid this, we propose a heuristic change detection procedure
that analyzes changes with respect to their impact on compiled subsumption relations.
Work on determining the impact of changes on a whole ontology is reported in [23]. As
our goal is to determine whether changes in the external ontology invalidates compiled
knowledge, we have to analyze the actual impact of changes on individual concept defi-
nitions. We want to classify these changes as eitherharmlessor harmfulwith respect to
compiled knowledge.

5.1 Determining Harmless Changes

As compiled knowledge reflects subsumption relations between query concepts, a harm-
less change is a set of modifications to an ontology that does not change these subsump-
tion relations. Finding harmless changes is therefore a matter of deciding whether the
modifications affect the subsumption relation between query concepts. We first look at
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the effect of a set of modifications on individual concepts:

Assuming thatC represents the concept under consideration before andC′ the concept
after the change there are four ways in which the old versionC may relate to the new
versionC′:

1. the meaning of concept is not changed:C ≡ C′ (e.g. because the change was in
another part of the ontology, or because it was only syntactical);

2. the meaning of a concept is changed in such a way that concept becomes more
general:CvC′

3. the meaning of a concept is changed in such a way that concept becomes more
specific:C′ vC

4. the meaning of a concept is changed in such a way that there is no subsumption
relationship betweenC andC′.

The same observations can be made for a relation before and after a change, denoted as
RandR′ respectively. The next question is how these different types of changes influences
the interpretation of query concepts. We take advantage of the fact that there is a very tight
relation between changes in concepts of the external ontology and implied changes to the
query concepts using these concepts:

Lemma 1 (Monotonicity of Effect) Let c(Q) be the set of all concept names and r(Q)
the set of all relation names occurring in query Q, let further C∈ c(Q) and R∈ r(Q) then
changing C has the same impact on the interpretation of Q as it has on the interpretation
of C, in particular, we have CvC′ =⇒ Qv Q′ and C′ vC =⇒ Q′ v Q where Q′ is the
query as being interpreted after changing C. Analogously, a change of R has the same
effect on the complete query.

Proof 3 (Sketch) The idea of the proof is the following: Queries contain conjuncts of
the form C(x) or R(x,y). Conjuncts of the first form are interpreted as{x|x ∈ Cℑ}. It
directly follows that changing the interpretation of the concept C referred to in a conjunct
of this type leads to the same change on the interpretation of the conjunct and because
conjunction is interpreted as set intersection the whole query. Conjuncts of the second
type are interpreted as{x|∃y : (x,y) ∈ Rℑ}. The variable y can be further constraint
by a conjunct of the first type. Again changes in the interpretation of the concept that
further restricts y have the same effect on possible interpretations of y and therefore also
on the interpretation of conjuncts of the second type. Using the same argument, we see
that making R more general/specific (allowing more/less tuples in the relation) makes
conjuncts of the second form more general/specific. Using these basic conclusions, we
can proof the lemma by induction over the lengths of the path in the dependency graph of
the query where nodes represent conjuncts and arcs co-occurrence of variables.

We can exploit this relation between the interpretation of concepts and queries in order
to identify the effect of changes in the external ontology on the subsumption relations
between different query concepts. First of all the above result directly generalizes to
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multiple changes with the same effect, i.e. a queryQ becomes more general(specific)
or stays the same if none of the elements inc(Q)∪ r(Q) become more specific(general).
Further, the subsumption relation between two query concepts does not change if the more
general(specific) query becomes even more general(specific) or stay the same. Combining
these two observations, we derive the following characterization of harmless change.

Theorem 3 (Harmless Change)A change is harmless with respect to compiled knowl-
edge (i.e. Q1vQ2 =⇒Q′

1vQ′
2) if for all compiled subsumption relations C1vC2 where

Ci is defined by query Qi we have:

• X′ v X for all X ∈ c(Q1)∪ r(Q1)

• X v X′ for all X ∈ c(Q2)∪ r(Q2)

Proof 4 We assume that X′vX for all X ∈ c(Q1)∪r(Q1). Applying lemma 1 with respect
to all X ∈ c(Q1)∪ r(Q1) we derive Q′1 v Q1. We further assume that Xv X′ for all
X ∈ c(Q2)∪ r(Q2). Using lemma 1 we get Q2vQ′

2. This leads us to Q′1vQ1vQ2vQ′
2.

Theorem 3 is established by transitivity of the subsumption relation.

The theorem provides us with a correct but incomplete method for deciding whether
a change is harmless. This basic method can be refined by analyzing the overlap ofc(Q1)
andc(Q2) in combination with the relations they restrict. This more accurate method is
not topic of this paper, but it relies on the same idea as the theorem given above.

5.2 Characterizing Changes

Now we are able to determine the consequence of changes in the concept hierarchy on the
integrity of the mapping, we still need to know what the effect of specific modifications on
the interpretation of a concepts is (i.e. whether it becomes more general or more specific).
As our goal is to determine the integrity of mappings without having to do classification,
we describe what theoretically could happen to a concept as result of a modification in the
ontology. To to so, we have listed all possible change operations to an ontology according
to the OWL-lite1 knowledge model in the same style as done in [3]. The list of operations
is extendable to other knowledge models; we have chosen the OWL-lite model because
of its simplicity and its expected important role on the Semantic Web. Apart fromatomic
change operationsto an ontology — likeadd range restriction or delete subclass relation —
the list also contains somecomplex change operations, which consist of multiple atomic
operations and/or incorporate some additional knowledge. The complex changes are of-
ten more useful to specify effects than the basic changes. For example, for operations like
concept moved up, or domain enlarged, we can specify the effect more accurately than for
the atomic operationssubclass relation changed anddomain modified2. Atomic changes can
be detected without using the knowledge in the ontology itself, only using the knowledge
of the knowledge model, i.e. the language. These changes are detected at a structural

1Seehttp://www.w3.org/TR/owl-features/.
2For a complete list, seehttp://wonderweb.man.ac.uk/deliverables/D20.shtml.
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level. To identify complex changes, we also need to use the content of the ontology it-
self. We are currently working on rules and heuristics to distill complex changes from
sets of atomic changes. Table 1 contains some examples of operations and their effect
on the classification of concepts. The table only shows a few examples, although our
full ontology of change operations contains around 120 operations. This number is still
growing as new complex changes are defined. A snapshot of the change ontology can be
found online.3 The specification of effects is not complete, in the sense that it describes

Operation Effect
Attach a relation to conceptC C: Specialized
Complex: Change the superclass of conceptC to a concept lower in the
hierarchy

C: Specialized

Complex: Restrict the range of a relationR (effect on all C that have a
restriction on R)

R: Specialized,
C: Specialized

Remove a superclass relation of a conceptC C: Generalized
Change the concept definition ofC from primitive to defined C: Generalized
Add a concept definitionA C: Unknown
Complex:Add a (not further specified) subclassA of C C: No effect
Define a relationRas functional R: Specialized

Table 1: Some modification to an ontology and their effects on the classification of con-
cepts in the hierarchy.

“worst case” scenario’s, and that for some operations the effect is “unknown” (i.e. unpre-
dictable). In contrast to [17] who provides complete semantics of changes we prefer to
use heuristics in order to avoid expensive reasoning about the impact of changes.

5.3 Update Management

With the elements that we described in this section, we now have a complete procedure to
determine whether compiled knowledge in other modules is still valid when the external
ontology is changed. The complete procedure is as follows:

1. create a list of concepts and relations that are part of the “subsuming” query of any
compiled axiom;

2. create another list of concepts and relations that are part of the “subsumed” query
of any compiled axiom;

3. achieve the modifications that are performed in the external ontology;

4. use the modifications to determine the effect on the interpretation of the concept
and relations.

5. check whether there are concepts or relations in the first, “subsuming”, list that
became more specific, or concepts or relations in the second, “subsumed”, list that

3http://ontoview.org/changes/1/3/
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became more general, or concepts or relations in any of the lists with an unknown
effect; if not, the integrity of the mapping is preserved.

Algorithm 2 Update
Require: Ontology ModuleM
Require: Ontology ModuleM j

for all compiled axiomsC1 vC2 in Mc do
for all X ∈ c(Q1)∪ r(Q1) do

if effect onC is ’generalized’ or ’unknown’then
Mc := Compile(M,M j )

end if
end for
for all X ∈ c(Q2)∪ r(Q2) do

if effect onX is ’specialized’ or ’unknown’then
Mc := Compile(M,M j )

end if
end for

end for

We describe the procedure in a more structured way in Algorithm 2. The algorithm
triggers a (re-)compilation step only if it is require in order to resume integrity. Otherwise
no action is taken, because the previously compiled knowledge is still valid. All the steps
can be automated. A tool that helps to automate step 3 and 4 is described in [26]. This
tool will compare two versions of an ontology and derive the list of change operations
that is necessary to transform the one into the other. It will also be able to detect some of
thecomplexoperations. The tool will also annotate the definitions in an ontology with the
effect that the change has on its place in the hierarchy.

6 Application in a Case Study

In order to support the claims made about the advantage of modular ontologies, we applied
our model in a case study that has been carried out in the course of the WonderWeb
project. Our main intend was to show that the update management procedure presented in
the last section can be used to avoid the recomputation of subsumption relations in many
cases. For this purpose, we defined a small example ontology using mappings to a Human
Resource ontology that was developed stepwise in the case study. We used the changes
that occured in the human resource ontology during the different steps of the case study
and determined the impact on our example ontology. Besides this, the case study provides
us with examples of implied subsumption some of which are non trivial but likely to occur
in real life situations.
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6.1 The WonderWeb Case Study

The WonderWeb case study assumes that an existing database schema that is used as the
basis for an ontology that should function on the Semantic Web. A database in the Human
Resource (HR) domain is used as an example. The first version of the ontology is created
by a tool that automatically converts a schema into an ontology [33]. In the next phase,
the quality of the ontology is improved by relating this ontology to the foundational on-
tology DOLCE [18]. First, the HR ontology is aligned with the DOLCE ontology, and
in several successive steps the resulting ontology is further refined. During this process,
the ontology changes continuously, which cause problems when other ontologies refer to
definitions in the evolving ontology. Therefore, in our case study, evolution management
is important during the entire life-cycle of the ontology development process.

Besides this DOLCE+HR ontology, we assume that we have another ontology (we
call it the local ontology) that uses terms and definitions from the evolving DOLCE+HR
ontology (theexternal ontology). As an example, we define a very simple ontology about
employees (see Figure 1). Our example ontology introduces the concept ‘FulltimeEm-
ployee’ and defines a superclass ‘Employee’ and two subclasses ‘DepartmentMember’
and ‘HeadOfDepartment’ using terms from the DOLCE+HR ontology.

Employee

Fulltime
Employee

Department
Member

HeadOf
Department

DOLCE+HR ontology

Figure 1: A simple ontology (left) with some concepts (dashed ovals) that are defined
using terms from the DOLCE+HR ontology (schematically representation by al large
oval).

The specific problem in our case is that the changes in the DOLCE+HR ontology
could affect the reasoning in the local ontology. We want to be able to predict whether
or not the reasoning in the local ontology is still valid for specific changes in the external
ontology.

The evolution of the DOLCE+HR ontology consisted of several steps. Each of these
steps involves some typical changes. We will briefly summarize them and show some
changes that are typical for a specific step.

• In the first step, the extracted HR ontology is aligned with the DOLCE founda-
tional ontology, i.e. the concepts and properties in the HR ontology are connected
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to concepts and properties in the DOLCE ontology via subsumption relations. For
example, the concept ‘Departments’ from the HR ontology is made a subclass of
‘Social-Unit’ in DOLCE.

• The refinement step involves a lot of changes. Some property restrictions are added,
and some additional concepts and properties are created to define the HR concepts
more precisely. For example, the concept ‘Administrative-Unit’ is introduced as a
new subclass of ‘Social-Unit’, and the concept ‘Departments’ is made a subclass of
it. Also, the range of the property ‘email’ is restricted from ‘Abstract-Region’ to its
new subclass ‘Email’.

• In the next step, a number of concepts and properties are renamed to names that bet-
ter reflect their meaning. For example, ‘Departments’ is renamed to ‘Department’
(singular), and the two different variants of the relation ‘managerid’ are renamed
to ‘employeemanager’ and ‘departmentmanager’.

• In the final step, the tidying step, all properties and concepts that are not necessary
anymore are removed and transformed into property restrictions. For example, the
property ‘employeeemail’ is deleted and replaced by an existential restriction in
the class ‘Employee’ on the property ‘abstractlocation’ to the class ‘Email’.

6.2 Modularization in the Case Study

If we now consider the problem statement from the case study, we have an local ontology
with a concept hierarchy that is built up by the following explicitly stated subsumption
relations (see Figure 1 again):

FulltimeEmployeev Employee

DepartmentMemberv FulltimeEmployee

HeadO f Departmentv FulltimeEmployee

This ontology introduces ’Full time employee’ as an new concept, not present in the
case study ontology. Consequently, this concept is only defined in terms of its relation to
other concepts in the local ontology.

All other concepts are externally defined in terms of ontology based queries over the
case study ontology. The first external definition concerns the concept ’Employee’ that is
equivalent to the ’Employee’ concept in the case study ontology. This can be defined by
the following trivial view:

Employee≡ HR : Employee(x)

Another concept that is externally defined in the ’Head of Department’ concept. We define
it to be the set of all instances that are in the range of the ’department manager’ relation.
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The definition of this view given below shows that our approach is flexible enough to
define concepts in terms of relations.

HeadO f Department≡ HR : ∃y[departmentManager(y,x)]

An example for a more complex external concept definition is the concept ’department
member’ which is defined using a query that consists of three conjuncts, claiming that a
department is an employee that is in the hasmember relation with a Department.

DepartmentMember≡ HR : ∃y[Department(y) ∧ has]member(y,x) ∧ Employee(x)]

Implied subsumption relations If we now consider logical reasoning about these ex-
ternal definitions, we immediately see that the definition of Employee subsumes the defi-
nition of DepartmentMember, as the former occurs as part of the definition of the latter.

|= DepartmentMemberv Employee (12)

At a first glance, there is no relation between the definition of a Head of Department
and the other two statements as it does not use any of the concept- or relation names.
However, when we use the background knowledge provided by the case study ontology
we can derive some implied subsumption relations. The reasoning is as follows. Because
the range of the departmentmanger is set to ’Department’ and the domain to ’Manager’,
the definition of HeadofDepartment is equivalent to:

∃y[Department(y) ∧ departmentmanager(y,x) ∧ Manager(x)]

As we further know that Manager is a subclass of Employee and departmentmanager is
a sub-relation of hasmember, we can derive the following subsumption relation between
the externally defined concepts:

|= HeadO f Departmentv Employee (13)

|= HeadO f Departmentv DepartmentMember (14)

When the relations 12–14 are added to the local ontology, it possible to do subsumption
reasoning without having to access the DOLCE+HR ontology anymore.

6.3 Updating the Models

We will now illustrate that the conclusions of the procedure are correct by studying the
impact of changes mentioned in the problem statement.

Example 1: The Employee Concept The first change we observed is the removal of
properties from the Employee concept. Our rules tell that this change makes the new
version more general compared to its old version:

Employeev Employee′
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According to our procedure, this shouldn’t be a problem because Employee is in the ’sub-
suming list’.

When we analyze this change, we see that it has an impact on the definition of the
concept DepartmentMember as it enlarges the set of objects allowed to take the first place
in the hasmember relation. This leads to a new definition ofDepartmentMember′ with
DepartmentMemberv DepartmentMember′. As DepartmentMember was already more
general than HeadOfDepartment and the Employee concept is not used in the definition
of the latter the implied subsumption relation indeed still holds.

Example 2: The departmentmanager Relation The second example, we have to deal
with a change affecting a relation that is used in en external definition. The relation de-
partmentmanager is specialized by restricting its range to a more specific concept making
it a subrelation of its previous version:

departmentmanagerw departmentmanager′

Again, this is harmless according to our procedure, as departmentmanager is in the ‘sub-
sumed list’.

The analysis show that this change has an impact on the definition of the concept
HeadOfDepartment as it restricts the allowed objects to the more specific Class Manager.
The new definitionHeadO f Department′ is more specific that the old one:HeadO f Department′v
HeadO f Department. As the old version was already more specific than the definition of
DepartmentMember and the departmentmanager relation is not used in the definition of
the latter the implied subsumption is indeed still valid.

Example 3: The Department Concept The different changes of the definition of the
department concept left us with no clear idea of the relation between the old and the new
version. In this specific case, however, we can still make assertions about the impact
on implied subsumption relations. The reason is that the concept occurs in both defini-
tion. Moreover, it plays the same role, namely restricting the domain of the relation that
connects an organizational unit with the set objects that make up the externally defined
concept. As a consequence, the changes have the same impact on both definitions thus
not invalidating the implied subsumption relation.

7 Discussion

In this deliverable, we discussed an infrastructure for representation and reasoning with
modular ontologies. The intend was to enhance the existing semantic web infrastructure
with notions of modularization that have been proven useful in other areas of computer
science, in particular in software engineering. We defined a set of requirements for modu-
lar ontologies that arise from expected benefits such as enhanced reuse and more efficient
reasoning. Taking the requirements of loose coupling, self containment and integrity as
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a starting point, we defined a framework for modular ontologies providing the following
contributions to the state of the art in ontlogy representation for the semantic web:

1. We presented a formal model for describing dependencies between different on-
tologies. We proposed conjunctive queries for defining concept using elements
from another ontology and presented a model-based semantics in the spirit of dis-
tributed description logics that provides us with a notion of logical consequence
across different ontologies.

2. We compared our model with existing standard, in particular the web ontology
language OWL and showed that the OWL import facilities can easily be captured as
a special case in our model. We further showed that our model provides additional
expressiveness in particular with respect to modelling relations. In order to get a
better idea of the improvements of our model over OWL, we investigated the formal
properties of inter module mappings, their impact on reasoning and their intuition.

3. We described a method for detecting changes in an ontology and for assessing their
impact. The main feature of this method is the derivation of conceptual changes
from purely syntactic criteria. These conceptual changes in turn provide input for
a semantical analysis of the effect on dependent ontologies, in particular on the
validity of implied subsumption relations. We applied the method in a case study in
the Wonder Web project and were able to determine the impact of changes without
logical reasoning.

In summary, this deliverable covers the representation of modular ontologies on a
syntactic and semantic level as well as the notion of logical consequence as a basis for
inferencing. The notions defined here can be exploited by knowledge engineers to design
newly created ontologies in a modular fashion. What is still missing in order to support
a wide adoption of this infrastructure are methods that support the process of migrating
existing ontologies to this new infrastructure. As the way of defining concepts we propose
is equivalent to OWL, the missing part is a set of methods that analyze ontologies and
split them up into modules according to the principles of maximal internal cohesion and
maximal external independence. A number of such methods are known from the area of
object oriented databases, where so called fragmentation methods are used to determine
an optimal distribution of object definitions over different object bases. Further, In the
area of parallel processing algorithms for partitioning graphs into a set of subgraphs have
been developed that could be applied to ontologies when regarding the RDF encoding of
the ontology as a graph that has to be split up. Such methods for identifying modules are
not only interesting for splitting up existing ontologies, they can also be used as a design
tool to help knowledge engineers to come up with a useful set of modules.
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