
IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

Language Extensions

WonderWeb: Ontology Infrastructure for the Semantic
Web

Sean Bechhofer & Ian Horrocks & Jeff Pan
University of Manchester

Kilburn Building
Oxford Road

Manchester M13 9PL
email: {seanb|horrocks|panz}@cs.man.ac.uk

Identifier Del 3

Class Deliverable

Version 1.0

Date 30-06-2004

Status Final

Distribution Public

Lead Partner VUM

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

WonderWeb Project

This document forms part of a research project funded by the IST Programme of the Commission
of the European Communities as project number IST-2001-33052.

For further information about WonderWeb, please contact the project co-ordinator:

Ian Horrocks

The Victoria University of Manchester

Department of Computer Science

Kilburn Building

Oxford Road

Manchester M13 9PL

Tel: +44 161 275 6154

Fax: +44 161 275 6236

Email: wonderweb-info@lists.man.ac.uk

ii

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

Contents

Administrative Details 1

1 Introduction 2

2 A Horn Rules Extension to OWL 3
2.1 Background and Motivation . 3
2.2 Overview . 4
2.3 Abstract Syntax . 4

2.3.1 Rules . 5
2.3.2 Human Readable Syntax . 6

2.4 Direct Model-Theoretic Semantics . 6
2.4.1 Interpreting Rules . 7
2.4.2 Example . 7

2.5 XML Concrete Syntax . 8
2.5.1 Example . 10

2.6 The Power of Rules . 10
2.7 Examples of ORL . 12

2.7.1 Transferring Characteristics . 12
2.7.2 Inferring the Existence of New Individuals 14

2.8 Mapping to RDF Graphs . 15
2.9 Reasoning Support for ORL . 17
2.10 Summary . 18

3 Extending OWL with Complex Role Inclusion Axioms 19
3.1 Motivation . 19
3.2 Preliminaries . 21

3.2.1 Relationship with Grammar Logics 24
3.2.2 Role value maps . 25

3.3 SH +I Q is undecidable . 25
3.4 R I Q is decidable . 28

3.4.1 Translating RIAs into automata 30
3.4.2 A Tableau for R I Q . 33
3.4.3 The Tableau Algorithm . 36
3.4.4 Avoiding the blow-up . 40

3.5 Evaluation of the R I Q algorithm in FaCT 40
3.6 Summary and Outlook . 42

4 A Datatype Predicate Extension to OWL 43
4.1 Background and Motivation . 43

4.1.1 Datatype Groups . 44
4.1.2 Summary . 48

4.2 SWRL-P: Extending SWRL with Predicates 48
4.2.1 Abstract Syntax . 49
4.2.2 Direct Model Theoretic Semantics 49

iii

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

4.2.3 SWRL-P vs. SWRL 0.7 . 50

5 Other Proposed Extensions 52
5.1 Alternative Semantics for OWL Rules 52
5.2 A Fuzzy Extension to OWL . 53
5.3 A Context Extension to OWL . 53

6 Conclusion 54

iv

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

Executive Summary

The importance of ontologies in the Semantic Web has prompted the development of
several proposed extensions to the OWL ontology language. These include extensions for
rules, fuzzy concepts, datatypes and multiple contexts. In this report we will study several
of the more prominent proposals in detail, and also give an overview of a range of other
work in this area.

1

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

1 Introduction

Given that ontologies are set to play a key role in the Semantic Web, it is reasonable that
one of the first tasks to be tackled in the development of Semantic Web infrastructure
was the development and standardisation of a suitable ontology language. This task was
finally completed on February 10th 2004 with the recommendation by W3C of the OWL
Web Ontology Language [71].

Like its predecessors OIL [22] and DAML+OIL [38], on which it was based, the
OWL language is closely related to an expressive Description Logic (DL), in this case
SH OI N (Dn) [35]. The decision to base all of these languages on DLs was motivated
by the many advantages that derive therefrom:1 the languages come with a well defined
semantics; their formal properties are well understood, in particular with respect to the
decidability and complexity of key reasoning tasks; sound and complete algorithms for
performing these reasoning tasks are well known; and reasoning systems using highly
optimised implementations of these algorithms are already available [38, 39].

Another important influence on the design of OWL was the decision to layer the lan-
guage on top of RDF [6], and to exploit as much as possible of the existing RDF in-
frastructure. Of particular significance in this regard was the decision to rely on RDF
Datatypes, which are themselves based on XML Schema datatypes [10].

Basing the design on DLs and on RDF conferred important advantages on OWL.
These advantages do not, however, come without cost: retaining the decidability of rea-
soning requires the expressive power of the “abstract” part of the language to be con-
strained, and relying on RDF for datatypes results in the “concrete” part of the language
(i.e., the datatypes) being very weak [55]. While acceptable in many contexts, this lack
of expressive power can be problematical in many applications, for example in describ-
ing web services, where it may be necessary to relate inputs and outputs of composite
processes to the inputs and outputs of their component processes [73], or in medical in-
formatics, where it may be necessary to transfer characteristics across partitive properties
(an injury to part of an anatomical structure may be considered to be an injury of the
structure as a whole) [63]. More expressive datatypes may also be required in many ap-
plications, e.g., to constrain values to be in an integer sub-range (the value of age may
be constrained to be in the range 0 to 150) or to use higher arity datatype predicates to
constrain relationships between multiple values (the value of income may be constrained
to be greater than the value of expenditure).

The recognition of these and other limitations has motivated research on several pos-
sible extensions to OWL. In this document we will describe three of the most well formed
proposals in detail: the OWL Rules Language (ORL) [36], complex role inclusion ax-
ioms [40], and datatype predicates [53]. We will also give pointers to other research on
extensions to OWL, including alternative rules proposals [20, 23], a “fuzzy” extension to
OWL [77], a context extension to OWL (C-OWL) [13] and a proposal for an OWL query
language.

1See http://lists.w3.org/Archives/Public/www-webont-wg/

2

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

2 A Horn Rules Extension to OWL

2.1 Background and Motivation

Many of the limitations of OWL stem from the fact that, while the language includes a
relatively rich set of class constructors, the language provided for talking about properties
is much weaker. In particular, there is no composition constructor, so it is impossible
to capture relationships between a composite property and another (possibly composite)
property. The standard example here is the obvious relationship between the composition
of the “parent” and “brother” properties and the “uncle” property, i.e., we would like to
assert that the composition of parent and brother implies uncle.

One way to address this problem would be to extend the DL underlying OWL with a
more powerful language for describing properties: in Section 3 we will examine in detail
a recent proposal for such an extension. In order to maintain decidability, however, the
usage of composition must be limited, and this means that not all relationships between
composed properties can be captured—in fact even the relatively simple “uncle” example
cannot not be captured (because “uncle” is not one of “parent” or “brother”).

An alternative way to overcome some of the expressive restrictions of OWL would be
to extend it with some form of “rules language”. In fact adding rules to description logic
based knowledge representation languages is far from being a new idea. Several early
description logic systems, e.g., Classic [59, 12], included a rule language component. In
these systems, however, rules were given a weaker semantic treatment than axioms as-
serting sub- and super-class relationships; they were only applied to individuals, and did
not affect class based inferences such as the computation of the class hierarchy. More
recently, the CARIN system integrated rules with a description logic in such a way that
sound and complete reasoning was still possible [47]. This could only be achieved, how-
ever, by using a rather weak description logic (much weaker than OWL), and by placing
severe syntactic restrictions on the occurrence of description logic terms in the (heads
of) rules. Similarly, the DLP language proposed in [24] is based on the intersection of a
description logic with horn clause rules; the result is obviously a decidable language, but
one that is necessarily less expressive than either the description logic or rules language
from which it is formed.

In this section we will present a proposal for an OWL Rules Language (ORL) which
adds a simple form of Horn-style rules to OWL. In ORL, rules are syntactically and se-
mantically coherent with the ontology language, the basic idea being to add Horn rules
as a new kind of axiom in OWL DL with similar semantics to OWL subClassOf axioms.
This proposal has recently been adopted by the DAML Joint Committee on Agent Markup
Languages (part of the DARPA DAML programme), renamed the Semantic Web Rules
Language (SWRL) and published as a W3C note [37]. As such, it will form an important
input to a new W3C “Semantic Web Rules” working group that is likely to be established
within the next twelve months.

3

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

2.2 Overview

The basic idea of the proposal is to extend OWL DL with a form of rules while maintain-
ing maximum backwards compatibility with OWL’s existing syntax and semantics. To
this end, we add a new kind of axiom to OWL DL, namely Horn clause rules, extending
the OWL abstract syntax and the direct model-theoretic semantics for OWL DL [58] to
provide a formal semantics and syntax for OWL ontologies including such rules.

The proposed rules are of the form of an implication between an antecedent (body)
and consequent (head). The informal meaning of a rule can be read as: whenever (and
however) the conditions specified in the antecedent hold, then the conditions specified in
the consequent must also hold.

Both the antecedent (body) and consequent (head) of a rule consist of zero or more
atoms. Atoms can be of the form C(x), P(x,y), sameAs(x,y) or differentFrom(x,y), where
C is an OWL DL description, P is an OWL property, and x,y are either variables, OWL
individuals or OWL data values. Atoms are satisfied in extended interpretations (to take
care of variables) in the usual model-theoretic way, i.e., the extended interpretation maps
the variables to domain elements in a way that satisfies the description, property, sameAs,
or differentFrom, just as in the regular OWL model theory.

Multiple atoms in an antecedent are treated as a conjunction. An empty antecedent is
thus treated as trivially true (i.e. satisfied by every interpretation), so the consequent must
also be satisfied by every interpretation.

Multiple atoms in a consequent are treated as separate consequences, i.e., they must all
be satisfied. In keeping with the usual treatment in rules, an empty consequent is treated
as trivially false (i.e., not satisfied by any extended interpretation). Such rules are satisfied
if and only if the antecedent is not satisfied by any extended interpretation. Note that rules
with multiple atoms in the consequent could easily be transformed (via the Lloyd-Topor
transformations [48]) into multiple rules each with an atomic consequent.

It is easy to see that OWL DL becomes undecidable when extended in this way as
rules can be used to simulate role value maps [69] and make it easy to encode known
undecidable problems as an ORL ontology consistency problem (see Section 2.6).

2.3 Abstract Syntax

The syntax for ORL in this section abstracts from any exchange syntax for OWL and
thus facilitates access to and evaluation of the language. This syntax extends the abstract
syntax of OWL described in the OWL Semantics and Abstract Syntax document [58].

Like the OWL abstract syntax, we will specify the abstract syntax for rules by means
of a version of Extended BNF, very similar to the Extended BNF notation used for XML
[15]. In this notation, terminals are quoted; non-terminals are not quoted. Alternatives are
either separated by vertical bars (|) or are given in different productions. Components
that can occur at most once are enclosed in square brackets ([. . .]); components that can
occur any number of times (including zero) are enclosed in braces ({. . . }). Whitespace is
ignored in the productions given here.

Names in the abstract syntax are RDF URI references [43]. These names may be
abbreviated into qualified names, using one of the following namespace names:

4

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs http://www.w3.org/2000/01/rdf-schema#

xsd http://www.w3.org/2001/XMLSchema#

owl http://www.w3.org/2002/07/owl#

The meaning of each construct in the abstract syntax for rules is informally described
when it is introduced. The formal meaning of these constructs is given in Section 2.4 via
an extension of the OWL DL model-theoretic semantics [58].

2.3.1 Rules

From the OWL Semantics and Abstract Syntax document [58], an OWL ontology in the
abstract syntax contains a sequence of annotations, axioms, and facts. Axioms may be of
various kinds, for example, subClass axioms and equivalentClass axioms. This proposal
extends axioms to also allow rule axioms, by adding the production:

axiom ::= rule

Thus an ORL ontology could contain a mixture of rules and other OWL DL constructs, in-
cluding ontology annotations, axioms about classes and properties, and facts about OWL
individuals, as well as the rules themselves.

A rule axiom consists of an antecedent (body) and a consequent (head), each of which
consists of a (possibly empty) set of atoms. Just as for class and property axioms, rule
axioms can also have annotations. These annotations can be used for several purposes,
including giving a label to the rule by using the rdf:label annotation property.

rule ::= ’Implies(’{annotation} antecedent consequent’)’
antecedent ::= ’Antecedent(’{atom}’)’
consequent ::= ’Consequent(’{atom}’)’
Informally, a rule may be read as meaning that if the antecedent holds (is “true”), then

the consequent must also hold. An empty antecedent is treated as trivially holding (true),
and an empty consequent is treated as trivially not holding (false). Non-empty antecedents
and consequents hold iff all of their constituent atoms hold. As mentioned above, rules
with multiple consequents could easily transformed (via the Lloyd-Topor transformations
[48] into multiple rules each with a single atomic consequent.

Atoms in rules can be of the form C(x), P(x,y), Q(x,z), sameAs(x,y) or different-
From(x,y), where C is an OWL DL description, P is an OWL DL individual-valued Prop-
erty, Q is an OWL DL data-valued Property x,y are either variables or OWL individuals,
and z is either a variable or an OWL data value. In the context of OWL Lite, descriptions
in atoms of the form C(x) may be restricted to class names.

atom ::= description ’(’ i-object ’)’
| individualvaluedPropertyID ’(’ i-object i-object ’)’
| datavaluedPropertyID ’(’ i-object d-object ’)’
| sameAs ’(’ i-object i-object ’)’
| differentFrom ’(’ i-object i-object ’)’

Informally, an atom C(x) holds if x is an instance of the class description C, an atom
P(x,y) (resp. Q(x,z)) holds if x is related to y (z) by property P (Q), an atom sameAs(x,y)

5

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

holds if x is interpreted as the same object as y, and an atom differentFrom(x,y) holds if x
and y are interpreted as different objects.

Atoms may refer to individuals, data literals, individual variables or data variables.
Variables are treated as universally quantified, with their scope limited to a given rule. As
usual, only variables that occur in the antecedent of a rule may occur in the consequent (a
condition usually referred to as “safety”). As we will see in Section 2.6, this safety con-
dition does not, in fact, restrict the expressive power of the language (because existentials
can already be captured using OWL someValuesFrom restrictions).

i-object ::= i-variable | individualID
d-object ::= d-variable | dataLiteral

i-variable ::= ’I-variable(’ URIreference ’)’
d-variable ::= ’D-variable(’ URIreference ’)’

2.3.2 Human Readable Syntax

While the abstract Extended BNF syntax is consistent with the OWL specification, and is
useful for defining XML and RDF serialisations, it is rather verbose and not particularly
easy to read. In the following we will, therefore, often use a relatively informal “human
readable” form similar to that used in many published works on rules.

In this syntax, a rule has the form:

antecedent→ consequent,

where both antecedent and consequent are conjunctions of atoms written a1 ∧ . . .∧ an.
Variables are indicated using the standard convention of prefixing them with a question
mark (e.g., ?x). Using this syntax, a rule asserting that the composition of parent and
brother properties implies the uncle property would be written:

parent(?a,?b)∧brother(?b,?c)→ uncle(?a,?c). (1)

If John has Mary as a parent and Mary has Bill has a brother, then this rule requires that
John has Bill as an uncle.

2.4 Direct Model-Theoretic Semantics

The model-theoretic semantics for ORL is a straightforward extension of the semantics
for OWL DL given in [58]. The basic idea is that we define bindings—extensions of OWL
interpretations that also map variables to elements of the domain in the usual manner. A
rule is satisfied by an interpretation iff every binding that satisfies the antecedent also
satisfies the consequent. The semantic conditions relating to axioms and ontologies are
unchanged, so an interpretation satisfies an ontology iff it satisfies every axiom (including
rules) and fact in the ontology.

6

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

2.4.1 Interpreting Rules

From the OWL Semantics and Abstract Syntax document [58] we recall that an abstract
OWL interpretation is a tuple of the form

I = 〈R,EC,ER,L,S,LV 〉,

where R is a set of resources, LV ⊆ R is a set of literal values, EC is a mapping from
classes and datatypes to subsets of R and LV respectively, ER is a mapping from properties
to binary relations on R, L is a mapping from typed literals to elements of LV , and S is a
mapping from individual names to elements of EC(owl:Thing).

Given an abstract OWL interpretation I , a binding B(I) is an abstract OWL interpre-
tation that extends I such that S maps i-variables to elements of EC(owl:Thing) and L
maps d-variables to elements of LV respectively. An atom is satisfied by a binding B(I)
under the conditions given in Table 1, where C is an OWL DL description, P is an OWL
DL individual-valued Property, Q is an OWL DL data-valued Property, x,y are variables
or OWL individuals, and z is a variable or an OWL data value.

Atom Condition on Interpretation
C(x) S(x) ∈ EC(C)
P(x,y) 〈S(x),S(y)〉 ∈ ER(P)
Q(x,z) 〈S(x),L(z)〉 ∈ ER(Q)
sameAs(x,y) S(x) = S(y)
differentFrom(x,y) S(x) 6= S(y)

Table 1: Interpretation Conditions

A binding B(I) satisfies an antecedent A iff A is empty or B(I) satisfies every atom
in A. A binding B(I) satisfies a consequent C iff C is not empty and B(I) satisfies every
atom in C. A rule is satisfied by an interpretation I iff for every binding B such that B(I)
satisfies the antecedent, B(I) also satisfies the consequent.

The semantic conditions relating to axioms and ontologies are unchanged. In particu-
lar, an interpretation satisfies an ontology iff it satisfies every axiom (including rules) and
fact in the ontology; an ontology is consistent iff it is satisfied by at least one interpreta-
tion; an ontology O2 is entailed by an ontology O1 iff every interpretation that satisfies
O1 also satisfies O2.

2.4.2 Example

Consider, for example, the “uncle” rule (1) from Section 2.3.2. Assuming that parent,
brother and uncle are individualvaluedPropertyIDs, then given an interpretation I =
〈R,EC,ER,L,S,LV 〉, a binding B(I) extends S to map the variables ?a, ?b, and ?c to
elements of EC(owl:Thing); we will use a, b, and c respectively to denote these ele-
ments. The antecedent of the rule is satisfied by B(I) iff (a,b) ∈ ER(parent) and (b,c) ∈
ER(brother). The consequent of the rule is satisfied by B(I) iff (a,c) ∈ ER(uncle). Thus

7

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

the rule is satisfied by I iff for every binding B(I) such that (a,b) ∈ ER(parent) and
(b,c) ∈ ER(brother), then it is also the case that (a,c) ∈ ER(uncle), i.e.:

∀a,b,c ∈ EC(owl:Thing).
((a,b) ∈ ER(parent)∧ (b,c) ∈ ER(brother))
→ (a,c) ∈ ER(uncle)

2.5 XML Concrete Syntax

Many possible XML encodings could be imagined (e.g., a RuleML based syntax as pro-
posed in http://www.daml.org/listarchive/joint-committee/1460.html), but
the most obvious solution is to extend the existing OWL Web Ontology Language XML
Presentation Syntax [29], which can be straightforwardly modified to deal with ORL. This
has several advantages:

• arbitrary OWL classes (e.g., descriptions) can be used as predicates in rules;

• rules and ontology axioms can be freely mixed;

• the existing XSLT stylesheet2 can easily be extended to provide a mapping to RDF
graphs that extends the OWL RDF/XML exchange syntax (see Section 2.8).

In the first place, the ontology root element is extended so that ontologies can include
rule axioms and variable declarations as well as OWL axioms, import statements etc. We
then simply need to add the relevant syntax for variables and rules. (In this document we
use the unspecified owlr namespace prefix. This prefix would have to be bound to some
appropriate namespace name, either the OWL namespace name or some new namespace
name.)

Variable declarations are statements about variables, indicating that the given URI is
to be used as a variable, and (optionally) adding any annotations. For example:

<owlr:Variable owlr:name="x1" />,

states that the URI x1 (in the current namespace) is to be treated as a variable.
Rule axioms are similar to OWL SubClassOf axioms, except they have owlr:Rule

as their element name. Like SubClassOf and other axioms they may include annota-
tions. Rule axioms have an antecedent (owlr:antecedent) component and a consequent
(owlr:consequent) component. The antecedent and consequent of a rule are both lists
of atoms and are read as the conjunction of the component atoms. Atoms can be formed
from unary predicates (classes), binary predicates (properties), equalities or inequalities.

Class atoms consist of a description and either an individual name or a variable name,
where the description in a class atom may be a class name, or may be a complex descrip-
tion using boolean combinations, restrictions, etc. For example,

<owlr:classAtom>
<owlx:Class owlx:name="Person" />
<owlr:Variable owlr:name="x1" />

</owlr:classAtom>

2http://www.w3.org/TR/owl-xmlsyntax/owlxml2rdf.xsl

8

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

is a class atom using a class name (#Person), and

<owlr:classAtom>
<owlx:IntersectionOf>
<owlx:Class owlx:name="Person" />
<owlx:ObjectRestriction

owlx:property="hasParent">
<owlx:someValuesFrom

owlx:property="Physician" />
</owlx:ObjectRestriction>

</owlx:IntersectionOf>
<owlr:Variable owlr:name="x2" />

</owlr:classAtom>

is a class atom using a complex description representing Persons having at least one parent
who is a Physician.

Property atoms consist of a property name and two elements that can be individual
names, variable names or data values (as OWL does not support complex property de-
scriptions, a property atom takes only a property name). Note that in the case where the
second element is an individual name the property must be an individual-valued Prop-
erty, and in the case where the second element is a data value the property must be a
data-valued Property. For example:

<owlr:individualPropertyAtom
owlx:property="hasParent">

<owlr:Variable owlr:name="x1" />
<owlx:Individual owlx:name="John" />

</owlr:individualPropertyAtom>

is a property atom using an individual-valued Property (the second element is an individ-
ual), and

<owlr:datavaluedPropertyAtom owlr:property="grade">
<owlr:Variable owlr:name="x1" />
<owlx:DataValue
rdf:datatype="&xsd;integer">4</owlx:DataValue>

</owlr:datavaluedPropertyAtom>

is a property atom using a data-valued Property datavalued property (the second element
is a data value, in this case an integer).

Finally, same (different) individual atoms assert equality (inequality) between sets of
individual and variable names. Note that (in)equalities can be asserted between arbitrary
combinations of variable names and individual names. For example:

<owlr:sameIndividualAtom>
<owlr:Variable owlr:name="x1" />
<owlr:Variable owlr:name="x2" />

9

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

<owlx:Individual owlx:name="Clinton" />
<owlx:Individual owlx:name="Bill Clinton" />

</owlr:sameIndividualAtom>

asserts that the variables x1, x2 and the individual names Clinton and Bill Clinton all refer
to the same individual.

2.5.1 Example

The example rule from Section 2.3.2 can be written in the XML concrete syntax for rules
as

<owlx:Rule>
<owlr:antecedent>
<owlr:individualPropertyAtom

owlr:property="parent">
<owlr:Variable owlr:name="a" />
<owlr:Variable owlr:name="b" />

</owlr:individualPropertyAtom>
<owlr:individualPropertyAtom

owlr:property="brother">
<owlr:Variable owlr:name="b" />
<owlr:Variable owlr:name="c" />

</owlr:individualPropertyAtom>
</owlr:antecedent>
<owlr:consequent>
<owlr:individualPropertyAtom

owlr:property="uncle">
<owlr:Variable owlr:name="a" />
<owlr:Variable owlr:name="c" />

</owlr:individualPropertyAtom>
</owlr:consequent>

</owlr:Rule>

2.6 The Power of Rules

In OWL, the only relationship that can be asserted between properties is subsumption be-
tween atomic property names, e.g., asserting that hasFather is a subPropertyOf hasParent.
In Section 2.3.2 we have already seen how a rule can be used to assert more complex re-
lationships between properties. While this increased expressive power is clearly very
useful, it is easy to show that it leads to the undecidability of key inference problems, in
particular ontology consistency.

For extensions of languages such as OWL DL, the undecidability of the consistency
problem is often proved by showing that the extension makes it possible to encode a
known undecidable domino problem [7] as an ontology consistency problem. In partic-
ular, it is well known that such languages only need the ability to represent an infinite

10

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

2-dimensional grid in order for consistency to become undecidable [3, 41]. With the ad-
dition of rules, such an encoding is trivial. For example, given two properties x-succ and
y-succ, the rule:

x-succ(?a,?b)∧ y-succ(?b,?c)∧
y-succ(?a,?d)∧ x-succ(?d,?e) → sameAs(?c,?e),

along with the assertion that every grid node is related to exactly one other node by each
of x-succ and y-succ, allows such a grid to be represented. This would be possible even
without the use of the sameAs atom in the consequent—it would only be necessary to
establish appropriate relationships with a “diagonal” property:

x-succ(?a,?b)∧ y-succ(?b,?c) → diagonal(?a,?c)
y-succ(?a,?d)∧ x-succ(?d,?e) → diagonal(?a,?e),

and additionally assert that every grid node is related to exactly one other node by diago-
nal.

The proposed form of OWL rules seem to go beyond basic Horn clauses in allowing:

• conjunctive consequents;

• class descriptions as well as class names as predicates in class atoms; and

• equalities and inequalities.

On closer examination, however, it becomes clear that most of this is simply “syntactic
sugar”, and does not add to the power of the language.

In the case of conjunctive consequents, it is easy to see that these could be eliminated
using the standard Lloyd-Topor transformation [48]. For example, a rule of the form

A→C1∧C2

can be transformed into a semantically equivalent pair of rules

A→C1

A→C2.

In the case of class descriptions, it is easy to see that a description d can be eliminated
from a rule simply by adding an OWL axiom that introduces a new class name and asserts
that it is equivalent to d, e.g.,

EquivalentClasses(D d).

The description can then be replaced with the name, here replacing the description d with
class name D.

In the case of equality atoms, the sameAs predicate could easily be substituted with
a “user defined” owl property called, for example, Eq. Such a property can be given the
appropriate meaning using a rule of the form

Thing(?x)→ Eq(?x,?x)

11

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

and by asserting that it is functional.
The case of inequalities is slightly more complex. When they occur in the consequent

of a rule they can easily be eliminated. For example, the atom

differentFrom(x,y),

where x and y are again variables or constants, can be replaced with

C(x)∧D(y),

where C and D are new class names that are asserted to be disjoint. When (in)equalities
occur in antecedents, however, this elimination does not work, because it would
strengthen the conditions that must be met in order for a binding to satisfy the antecedent.

2.7 Examples of ORL

We give two further examples of ORL that serve to illustrate some of their utility, and
show how the power of ORL goes beyond that of either OWL DL or Horn rules alone.

2.7.1 Transferring Characteristics

The first example is due to Guus Schreiber, and is based on ontologies used in an image
annotation demo [27].

Artist(?x)∧Style(?y)∧artistStyle(?x,?y)∧ creator(?x,?z)
→ style/period(?z,?y)

The rule expresses the fact that, given knowledge about the Style of certain Artists (e.g.,
van Gogh is an Impressionist painter), we can derive the style/period of an art object
from the value of the creator of the art object, where Style is a term from the Art and
Architecture Thesaurus (AAT),3 Artist is a class from the Union List of Artist Names
(ULAN),4 artistStyle is a property relating ULAN Artists to AAT Styles, and both creator
and style/period are properties from the Visual Resources Association catalogue (VRA),5

with creator being a subproperty of the Dublin Core element dc:creator.6

This rule would be expressed in the XML concrete syntax as follows (assuming ap-
propriate entity declarations):

<owlr:Rule>
<owlr:antecedent>
<owlr:classAtom>

<owlx:Class owlx:name="&ulan;Artist" />
<owlr:Variable owlr:name="x" />

</owlr:classAtom>

3http://www.getty.edu/research/tools/vocabulary/aat/
4http://www.getty.edu/research/conducting_research/vocabularies/ulan/
5http://www.vraweb.org/
6http://dublincore.org/

12

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

<owlr:classAtom>
<owlx:Class owlx:name="&aat;Style" />
<owlr:Variable owlr:name="y" />

</owlr:classAtom>
<owlr:individualPropertyAtom

owlr:property="&aatulan;artistStyle">
<owlr:Variable owlr:name="x" />
<owlr:Variable owlr:name="y" />

</owlr:individualPropertyAtom>
<owlr:individualPropertyAtom

owlr:property="&vra;creator">
<owlr:Variable owlr:name="x" />
<owlr:Variable owlr:name="z" />

</owlr:individualPropertyAtom>
</owlr:antecedent>
<owlr:consequent>
<owlr:individualPropertyAtom

owlr:property="&vra;style/period">
<owlr:Variable owlr:name="z" />
<owlr:Variable owlr:name="y" />

</owlr:individualPropertyAtom>
</owlr:consequent>

</owlr:Rule>

The example is interesting because it shows how rules can be used to “transfer charac-
teristics” from one class of individuals to another via properties other than subClassOf—
in this case, the Style characteristics of an Artist (if any) are transferred (via the creator
property) to the objects that he/she creates. This idiom is much used in ontologies de-
scribing complex physical systems, such as medical terminologies, where partonomies
may be as important as subsumption hierarchies, and where characteristics often need to
be transfered across various partitive properties [52, 62, 66]. For example, the location
of a trauma should be transfered across the partOf property, so that traumas located in a
partOf an anatomical structure are also located in the structure itself [63]. This could be
expressed using a rule such as

Location(?x)∧Trauma(?y)∧ isLocationOf(?x,?y)∧
isPartOf(?x,?z)
→ isLocationOf(?z,?y)

A similar technique could be used to transfer properties to composite processes from their
component processes when describing web services.

Terminology languages designed specifically for medical terminology such as Grail
[61] and SNOMED-RT [72] often allow this kind of idiom to be expressed, but it cannot
be expressed in OWL (not even in OWL full). Thus this kind of rule shows one way in
which ORL go beyond the expressive power of OWL DL.

13

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

2.7.2 Inferring the Existence of New Individuals

The second example is due to Mike Dean, and illustrates a scenario in which we want to
express the fact that for every Airport there is a map Point that has the same location (lati-
tude and longitude) as the Airport and that is an object of “layer” (a map DrawingLayer).7

Moreover, this map point has the Airport as an underlyingObject and has the Airport name
as its Label. Note how the expressive power of ORL allows “existentials” to be expressed
in the head of a rule—it is asserted that, for every airport, there must exist such a map
point (using an OWL someValuesFrom restriction in a class atom). In this way ORL goes
beyond the expressive power of Horn rules.

The first part of this example is background knowledge about airports and maps ex-
pressed in OWL DL. (A few liberties have been taken with the OWL DL abstract syntax
here in the interests of better readability.) In particular, it is stated that map:location and
map:object are individual-valued Properties with inverse properties map:isLocationOf and
map:isObjectOf respectively; that latitude and longitude are data-valued Properties; that
map:Location is a class whose instances have exactly one latitude and exactly one longi-
tude, both being of type xsd:double; that layer is an instance of map:DrawingLayer; that
map is an instance of map:Map whose map:name is "Airports" and whose map:layer is
layer; and that airport:GEC is an instance of airport-ont:airport whose name is "Spokane
Intl" and whose location is latitude 47.6197 and longitude 117.5336.

ObjectProperty(map:location)
ObjectProperty(map:isLocationOf

inverseOf(map:location))
ObjectProperty(map:object)
ObjectProperty(map:isObjectOf

inverseOf(map:location))

DatatypeProperty(latitude)
DatatypeProperty(longitude)
Class(map:Location primitive

intersectionOf(
restriction(latitude allValuesFrom(xsd:double))
restriction(latitude minCardinality(1))
restriction(longitude allValuesFrom(xsd:double))
restriction(longitude minCardinality(1))))

Individual(layer type(map:DrawingLayer))

Individual(map type(map:Map)
value(map:name "Airports)
value(map:layer layer))

Individual(airport:GEC type(airport-ont:airport)

7http://www.daml.org/2003/06/ruletests/translation-3.n3

14

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

value(name "Spokane Intl")
value(location Individual(value(latitude 47.6197)

value(longitude 117.5336))))

The first rule in the example requires that if a map:Location is the sameLocation as
another location, then it has the same values for latitude and longitude.

map:Location(?maploc)∧ sameLocation(?loc,?maploc)∧
latitude(?loc,?lat)∧ longitude(?loc,?lon)
→

latitude(?maploc,?lat)∧ latitude(?maploc,?lon)

The second rule requires that wherever an airport-ont:Airport is located, there is
some map:Location that is the sameLocation as the airport’s location, and that is the
location of a map:Point that is an object of the map:DrawingLayer “layer”.

airport-ont:Airport(?airport)∧ location(?airport,?loc)∧
latitude(?loc,?lat)∧ longitude(?loc,?lon)
→
restriction(sameLocation

someValuesFrom(
intersectionOf(map : Location

restriction(isLocationOf

someValuesFrom(
intersectionOf(map : Point

restriction(map : isObjectOf

someValuesFrom(OneOf(layer)))))))))
(?loc)

The third rule requires that the map:Point whose map:location is
the map:Location of an airport-ont:Airport has the airport as a
map:underlyingObject and has a map:label which is the name of the airport.

airport-ont:Airport(?airport)∧
map:location(?airport,?loc)∧
sameLocation(?loc,?maploc)∧
map:Location(?point,?maploc)∧
airport-ont:name(?airport,?name)
→

map:underlyingObject(?point,?airport)∧
map:label(?point,?name)

2.8 Mapping to RDF Graphs

It is widely assumed that the Semantic Web will be based on a hierarchy of (increasingly
expressive) languages, with RDF/XML providing the syntactic and semantic foundation
(see, e.g., [9]). In accordance with this design philosophy, the charter of the W3C Web

15

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

Ontology Working Group (the developers of the OWL language) explicitly stated that
“The language will use the XML syntax and datatypes wherever possible, and will be
designed for maximum compatibility with XML and RDF language conventions.”. In
pursuance of this goal, the working group devoted a great deal of effort to developing an
RDF based syntax for OWL that was also consistent with the semantics of RDF [39]. It
is, therefore, worth considering how this design might be extended to encompass rules.

One rather serious problem is that, unlike OWL, rules have variables, so treating them
as a semantic extension of RDF is very difficult. It is, however, still possible to provide an
RDF syntax for rules—it is just that the semantics of the resultant RDF graphs may not
be an extension of the RDF Semantics [26].

A mapping to RDF/XML is most easily created as an extension to the XSLT transfor-
mation for the OWL XML Presentation syntax.8 This would introduce RDF classes for
ORL atoms and variables, and RDF properties to link atoms to their predicates (classes
and properties) and arguments (variables, individuals or data values).9 The example rule
given in Section 2.7.1 (that equates the style/period of art objects with the style of the
artist that created them) would be mapped into RDF as follows:

<owlr:Variable rdf:ID="x"/>
<owlr:Variable rdf:ID="y"/>
<owlr:Variable rdf:ID="z"/>
<owlr:Rule>

<owlr:antecedent rdf:parseType="Collection">
<owlr:classAtom>

<owlr:classPredicate
rdf:resource="&ulan;Artist"/>

<owlr:argument1 rdf:resource="#x" />
</owlr:classAtom>
<owlr:classAtom>

<owlr:classPredicate
rdf:resource="&aat;Style"/>

<owlr:argument1 rdf:resource="#y" />
</owlr:classAtom>
<owlr:individualPropertyAtom>

<owlr:propertyPredicate
rdf:resource="&aatulan;artistStyle"/>

<owlr:argument1 rdf:resource="#x" />
<owlr:argument2 rdf:resource="#y" />

</owlr:individualPropertyAtom>
<owlr:individualPropertyAtom>

<owlr:propertyPredicate
rdf:resource="&vra;creator"/>

<owlr:argument1 rdf:resource="#x" />
<owlr:argument2 rdf:resource="#z" />

8http://www.w3.org/TR/owl-xmlsyntax/owlxml2rdf.xsl
9The result is similar to the RDF syntax for representing disjunction and quantifiers proposed in [50].

16

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

</owlr:individualPropertyAtom>
</owlr:antecedent>
<owlr:consequent rdf:parseType="Collection">
<owlr:individualPropertyAtom>

<owlr:propertyPredicate
rdf:resource="&vra;style/period"/>

<owlr:argument1 rdf:resource="#z" />
<owlr:argument2 rdf:resource="#y" />

</owlr:individualPropertyAtom>
</owlr:consequent>

</owlr:Rule>

where &ulan;, &aat;, &aatulan; and &vra; are assumed to expand into the appropriate
namespace names. Note that complex OWL classes (such as OWL restrictions) as well as
class names can be used as the object of ORL’s classPredicate property.

2.9 Reasoning Support for ORL

Although ORL provides a fairly minimal rule extension to OWL, the consistency problem
for ORL ontologies is still undecidable (as we have seen in Section 2.6). This raises the
question of how reasoning support for ORL might be provided.

It seems likely, at least in the first instance, that many implementations will provide
only partial support for ORL. For this reason, users may want to restrict the form or
expressiveness of the rules and/or axioms they employ either to fit within a tractable or
decidable fragment of ORL, or so that their ORL ontologies can be handled by existing
or interim implementations.

One possible restriction in the form of the rules is to limit antecedent and conse-
quent classAtoms to be named classes, with OWL axioms being used to assert additional
constraints on the instances of these classes (in the same document or in external OWL
documents). Adhering to this format should make it easier to translate rules to or from ex-
isting (or future) rule systems, including Prolog, production rules (descended from OPS5),
event-condition-action rules and SQL (where views, queries, and facts can all be seen as
rules); it may also make it easier to extend existing rule based reasoners for OWL (such
as Euler10 or FOWL11) to handle ORL ontologies. Further, such a restriction would max-
imise backwards compatibility with OWL-speaking systems that do not support ORL. It
should be pointed out, however, that there may be some incompatibility between the first
order semantics of ORL and the Herbrand model semantics of many rule based reasoners.

By further restricting the form of rules and DL axioms used in ORL ontologies it
would be possible to stay within DLP, a subset of the language that has been shown to be
expressible in either OWL DL or declarative logic programs (LP) alone [24]. This would
allow either OWL DL reasoners or LP reasoners to be used with such ontologies, although
there may again be some incompatibility between the semantics of ORL and those of LP
reasoners.

10http://www.agfa.com/w3c/euler/
11http://fowl.sourceforge.net

17

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

Another obvious strategy would be to restrict the form of rules and DL axioms so that
a “hybrid” system could be used to reason about the resulting ontology. This approach
has been used, e.g., in the CLASSIC [59] and CARIN systems [47], where sound and
complete reasoning is made possible mainly by focusing on query answering, by restrict-
ing the DL axioms to languages that are much weaker than OWL, by restricting the use of
DL terms in rules, and/or by giving a different semantic treatment to rules.

Finally, an alternative way to provide reasoning support for ORL would be to extend
the translation of OWL into TPTP12 implemented in the Hoolet system,13 and use a first
order prover such as Vampire to reason with the resulting first order theory [64, 76]. This
technique would have several advantages: no restrictions on the form of ORL rules or
axioms would be required; the use of a first order prover would ensure that all inferences
were sound with respect to ORL’s first order semantics; and the use of the TPTP syntax
would make it possible to use any one of a range of state of the art first order provers.

2.10 Summary

In this section we have presented ORL, a proposed extension to OWL to include a simple
form of Horn-style rules. We have provided formal syntax and semantics for ORL, shown
how OWL’s XML and RDF syntax can be extended to deal with ORL, illustrated the
features of ORL with several examples, and discussed how reasoning support for ORL
might be provided.

The main strengths of ORL are its simplicity and its tight integration with the existing
OWL language. As we have seen, ORL extends owl with the most basic kind of Horn rule
(sweetened with a little “syntactic sugar”): predicates are limited to being OWL classes
and properties (and so have a maximum arity of 2), there are no disjunctions or negations
(of atoms), no built in predicates (such as arithmetic predicates), and no nonmonotonic
features such as negation as failure or defaults. Moreover, rules are given a standard first
order semantics. This facilitates the tight integration with OWL, with ORL being defined
as a syntactic and semantic extension of OWL DL.

12A standard syntax used by many first order theorem provers—see http://www.tptp.org
13http://www.w3.org/2003/08/owl-systems/test-results-out

18

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

3 Extending OWL with Complex Role Inclusion Axioms

3.1 Motivation

As we have already discussed, the OWL language is based on the SH OI N (Dn) DL
which is itself closely related to the well known SH I Q DL. The SH I Q DL [42, 32]
is an expressive knowledge representation formalism that extends ALC [68] with quali-
fying number restrictions, inverse roles, role inclusion axioms, and transitive roles. The
development of SH I Q was motivated and inspired by several applications, one of which
was the representation of knowledge about complex physically structured domains found,
e.g., in chemical engineering [65] and medical terminology [62].

For example, in SH I Q , we can describe fractures of the femur by the following
concept which, intuitively, denotes fractures that are located in the femur or the neck of
the femur:

FemurFracture
.
= Fractureu∃hasLocation.(FemurtFemurNeck).

To make this definition work, we also should describe the neck of the femur, e.g., as
follows:

FemurNeck
.
= BodyPartuProxima∃isDivisionOf.Femur.

SH I Q allows many important properties of application domains to be captured: e.g.,
we can state that hasLocation is transitive, and that LocatedIn is the inverse of
hasLocation. However, there is one extremely useful feature that SH I Q cannot ex-
press, namely the “propagation” of one property along another property [52, 60, 72].
Coming back to our example above, to capture that also a fracture of the shaft of the fe-
mur is a fracture of the femur, we need to add this information explicitly the definition of
FemurFracture. As such, this is easily feasible. A more elegant approach would be to
change our definition to

FemurFracture
.
= Fractureu∃hasLocation.(Femurt∃isDivisionOf.Femur).

Still, we have to have a similar disjunction in the definition of the fracture of the tibia,
and all other fractures. Thus, it would be useful if we could express, in general, the fact
that certain locative properties are transfered across certain partonomic properties so that
a fracture or trauma located in a part of a body structure is recognised as being located in
the body structure as a whole. This would yield the highly desirable inferences such as a
fracture of the shaft of the femur being inferred to be a kind of fracture of the femur, or an
ulcer located in the gastric mucosa being inferred to be a kind of stomach ulcer—without
the necessity to repeat this statement in the definition of every single such concept.

The importance of these kinds of inferences, particularly in medical terminology ap-
plications, is illustrated by the fact that three different such applications provide means
to express propagation. The Grail DL [61], which was specifically designed for use with
medical terminology, is able to represent these kinds of propagation (although it is quite
weak in other respects). In another medical terminology application using the compara-
tively inexpressive DL ALC , a rather complex “work around” is performed in order to
represent similar propagations [70]: so-called SEP-triplets are used both to compensate

19

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

for the absence of transitive roles in ALC , and to express the propagation of properties
across a distinguished “part-of” role. In a third application, use is made of so-called right-
identities, which correspond to our complex role inclusion axioms [72]. Finally, similar
expressiveness was also provided in the CycL language by the transfersThro statement
[46]. To the best of our knowledge, however, there is no proof of the correct treatment of
propagation in any of these applications.

As we have seen in Section 2, one way to address this problem is to extend the
language with Horn clause rules, but that this immediately leads to the undecidability of
key inference problems. An alternative aproach is to extend SH I Q so that this kind of
role propagation can be expressed: simply allow for role inclusion axioms (RIAs) of the
form R◦S v̇ P, which then forces all models I to interpret the composition of RI with SI

as a sub-relation of PI . E.g., the above examples translate into

hasLocation◦isDivisionOf v̇ hasLocation,

which implies that

Fractureu∃hasLocation.(Necku∃isDivisionOf.Femur),

i.e., a concept describing fractures of the neck of the femur, is indeed subsumed by (is a
specialisation of)

Fractureu∃hasLocation.Femur,

i.e., a concept describing fractures of the femur.
Unfortunately, this extension also leads to the undecidability of interesting inference

problems such as concept satisfiability and subsumption [78]. This undecidability is not
surprising once we observe the close relationship between RIAs, Grammar Logics [4,
5, 18], and role value maps [14, 69]. This relationship is discussed in more detail in
Section 3.2.1. Here, it should suffice to mention that a RIA RS v̇ T can be viewed as
a notational variant of the production rule T → RS of Grammar Logics or the concept
inclusion > v̇ (RSṽT) of a description logic allowing for role value maps.

On closer inspection of our motivating examples, we observe that only RIAs of the
form RS v̇ S or SR v̇ S are required in order to express propagation. To the best of
our knowledge, no (un)decidability results are known for similar restrictions of the above
mentioned Grammar Logics or DLs with role value maps. In this paper, we will show
that SH I Q extended with this restricted form of RIAs is still undecidable. Due to the
syntactic restrictions imposed on RIAs, we cannot re-use techniques employed to prove
undecidability of Grammar Logics or DLs with role value maps. Instead, our proof is by
reduction of the undecidable domino problem [8], and uses a rather special technique to
ensure a grid structure.

Decidability can be regained, however, by further restricting the set of RIAs to be
regular, and the logic obtained by restricting RIAs to regular ones is called R I Q . From
a practical point of view, the restrictions imposed by regularity do not seem to be severe:
regular RIAs should suffice for many applications, and non-regular RIAs may even be an
indicator of modelling flaws [60].

We prove the decidability of SH I Q with regular RIAs via a tableau-based decision
procedure for the satisfiability of concepts. We first translate regular RIAs into non-
deterministic automata, and then use these automata in the tableau algorithm. More pre-

20

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

cisely, the tableau algorithm replaces concepts of the form ∀R.C (where R is a role) with
expressions of the form ∀BR.C, where BR is a non-deterministic finite automaton (NFA)
capturing exactly the restrictions imposed on R by RIAs. Using these expressions, we
ensure that the concept C is indeed “pushed” to all those nodes it has to be pushed to,
even if they are far away from a node that has to satisfy ∀R.C. The algorithm is of the
same complexity as the one for SH I Q —in the size of BR and the length of the input
concept—but, unfortunately, BR can be exponential in the “depth” of R , i.e., in the length
of chains of roles depending on each other. We also present a syntactic restriction that
avoids this blow-up; investigating whether this blow-up can be avoided in general will be
part of future work.

As we have discussed above, the interaction between roles in regular RIAs can be cap-
tured by NFAs, but we have not yet explained which RIAs are regular. This is so because,
in the presence of inverse roles, the definition of regularity becomes slightly tricky: each
“left-linear” RIA of the form RS v̇ S is equivalent to a “right-linear” RIA S−R− v̇ S−.
Thus each left-linear RIA has consequences that are inherently a mixture of right- and
left-linear RIAs. Now it is well-known that grammars with a such a linear mixture are
stronger than right-linear grammars or left-linear grammars [28], and this is true also for
RIAs, as our undecidability result shows. Thus, to enable the transformation into an au-
tomaton, we impose an additional restriction, which we have chosen to be acyclicity in a
rather loose sense, i.e., we still allow for RIAs SS v̇ S, RS v̇ S, and SR v̇ S, but we do
not allow for combinations of RIAs such as RS v̇ S and SR v̇ R.

Finally, in order to evaluate the practicability of this algorithm, we have extended the
DL system FaCT [30] to deal with R I Q . We discuss how the properties of NFAs are
exploited in the implementation, and we present some preliminary results showing that
the performance of the extended system is comparable with that of the original, and that
it is able to compute inferences of the kind mentioned above w.r.t. the well-known Galen
medical terminology knowledge base [62, 30].

3.2 Preliminaries

In this section, we introduce the DL SH +I Q . This includes the definition of syntax,
semantics, and inference problems.

Definition 1 Let C be a set of concept names and R a set of role names. The set of roles
is R∪{R− |R∈R}. A role inclusion axiom is an expression of one of the following forms:

R1 v̇ R2, R1R2 v̇ R1, or R1R2 v̇ R2,

for roles Ri (each of which can be inverse). A generalised role hierarchy is a set of role
inclusion axioms.

An interpretation I = (∆I , ·I) associates, with each role name R, a binary relation
RI ⊆ ∆I ×∆I . Inverse roles are interpreted as usual, i.e.,

(R−)I = {〈y,x〉 | 〈x,y〉 ∈ RI} for each role R ∈ R.
An interpretation I is a model of a generalised role hierarchy R if it satisfies each inclu-
sion assertion in R , i.e., if

21

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

RI
1 ⊆ RI

2 for each R1 v̇ R2 ∈ R and
RI

1 ◦RI
2 ⊆ RI

3 for each R1R2 v̇ R3 ∈ R ,
where ◦ stands for the composition of binary relations.

Note that we did not introduce transitive role names since adding RR v̇ R to the gen-
eralised role hierarchy is equivalent to saying that R is a transitive role.

To avoid considering roles such as R−−, we define a function Inv on roles such that
Inv(R) = R− if R is a role name, and Inv(R) = S if R = S−.

Since we will often work with a string of roles, it is convenient to extend both ·I and
Inv(·) to such strings: if w = R1 . . .Rn for Ri roles, then wI = RI

1 ◦ . . . ◦RI
n and Inv(w) =

Inv(Rn) . . . Inv(R1). It follows immediately from the definition of the semantics that

〈x,y〉 ∈ wI iff 〈y,x〉 ∈ Inv(w)I .

Next, since each model satisfying w v̇ S also satisfies Inv(w) v̇ Inv(S) (and vice versa),
we can restrict generalised role hierarchies to those with role names on their right hand
side without any effect on the expressivity. For better readability, we will not do this in
the undecidability proof of SH +I Q , but we will do it for the decidable logic R I Q since
it makes the construction in the proofs easier.

Finally, for a generalised role hierarchy R , we define the relation v* to be the
transitive-reflexive closure of v̇ over {R v̇ S, Inv(R) v̇ Inv(S) | R,S roles and R v̇ S ∈R }.
A role R is called a sub-role (resp. super-role) of a role S if R v* S (resp. S v* R). Two roles
R and S are equivalent (R≡ S) if R v* S and S v* R.

Now we are ready to define the syntax and semantics of SH +I Q -concepts.

Definition 2 Let R be a generalised role hierarchy. A role R is simple in R if, for each
R′ v* R, R contains no RIA of the form R1 R2 v̇ R′ or R1 R2 v̇ Inv(R′). If R is clear from
the context, we often use “simple” instead of “simple in R ”.

The set of SH +I Q -concepts is the smallest set such that

• every concept name and >,⊥ are concepts, and,

• if C, D are concepts, R is a role (possibly inverse), S is a simple role (possibly
inverse) , and n is a non-negative integer, then C uD, C tD, ¬C, ∀R.C, ∃R.C,
(>nS.C), and (6nS.C) are also concepts.

A general concept inclusion axiom (GCI) is an expression of the form C v̇ D for two
SH +I Q -concepts C and D. A terminology is a set of GCIs.

An interpretation I = (∆I , ·I) consists of a set ∆I , called the domain of I , and a
valuation ·I which maps every concept to a subset of ∆I and every role to a subset of
∆I ×∆I such that, for all concepts C, D, roles R, S, and non-negative integers n, the
following equations are satisfied, where]M denotes the cardinality of a set M:

22

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

>I = ∆I ⊥I = /0 (top and bottom)
(CuD)I =CI ∩DI (conjunction)
(CtD)I =CI ∪DI (disjunction)

(¬C)I = ∆I \CI (negation)
(∃R.C)I = {x | ∃y.〈x,y〉 ∈ RI and y ∈CI} (exists restriction)
(∀R.C)I = {x | ∀y.〈x,y〉 ∈ RI implies y ∈CI} (value restriction)

(>nR.C)I = {x |]{y.〈x,y〉 ∈ RI and y ∈CI}> n} (at least restriction)
(6nR.C)I = {x |]{y.〈x,y〉 ∈ RI and y ∈CI}6 n} (at most restriction)

An interpretation I is a model of a terminology T (written I |= T) iff CI ⊆ DI for
each GCI C v̇ D in T .

A concept C is called satisfiable iff there is an interpretation I with CI 6= /0. A concept
D subsumes a concept C (written C v D) iff CI ⊆ DI holds for each interpretation. Two
concepts are equivalent (written C ≡ D) if they are mutually subsuming. The above infer-
ence problems can be defined w.r.t. a generalised role hierarchy R and/or a terminology
T in the usual way, i.e., by replacing interpretation with model of R and/or T .

For an interpretation I , an element x ∈ ∆I is called an instance of a concept C iff
x ∈CI .

Please note that number restrictions (>nR.C) and (6nR.C) are restricted to simple
roles. Intuitively, these are (possibly inverse) roles that are not implied by the compo-
sition of other roles. The reason for this restriction is that, without it, satisfiability of
SH I Q -concepts is undecidable [34], even for a logic without inverse roles and with only
unqualifying number restrictions (these are number restrictions of the form (>nR.>) and
(6nR.>)).

For DLs that are closed under negation, subsumption and (un)satisfiability can be mu-
tually reduced: C v D iff Cu¬D is unsatisfiable, and C is unsatisfiable iff C v ⊥. It is
straightforward to extend these reductions to generalised role hierarchies and terminolo-
gies. In contrast, the reduction of inference problems w.r.t. a terminology to pure concept
inference problems (possibly w.r.t. a role hierarchy), deserves special care: in [1, 67, 2],
the internalisation of GCIs is introduced, a technique that realises exactly this reduction.
For SH +I Q , this technique only needs to be slightly modified. The following Lemma
shows how general concept inclusion axioms can be internalised using a “universal” role
U , that is, a transitive super-role of all roles occurring in T or R and their respective
inverses.

Lemma 3 Let C,D be concepts, T a terminology, and R a generalised role hierarchy.
We define

CT := u
Civ̇Di∈T

¬CitDi.

Let U be a role that does not occur in T , C, D, or R . We set

RU := R ∪{UU v̇U}∪{R v̇U, Inv(R) v̇U | R occurs in T , C, D, or R }.

• C is satisfiable w.r.t. T and R iff CuCT u∀U.CT is satisfiable w.r.t. RU .

• D subsumes C with respect to T and R iff Cu¬DuCT u∀U.CT is unsatisfiable
w.r.t. RU .

23

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

The proof of Lemma 3 is similar to the ones that can be found in [67, 1]. Most
importantly, it must be shown that, (a) if a SH +I Q -concept C is satisfiable with respect
to a terminology T and a generalised role hierarchy R , then C,T have a connected model,
i. e., a model where any two elements are connect by a role path over those roles occurring
in C and T , and (b) if y is reachable from x via a role path (possibly involving inverse
roles), then 〈x,y〉 ∈U I . These are easy consequences of the semantics and the definition
of U .

Theorem 4 Satisfiability and subsumption of SH +I Q -concepts w.r.t. terminologies and
generalised role hierarchies are polynomially reducible to (un)satisfiability of SH +I Q -
concepts w.r.t. generalised role hierarchies.

3.2.1 Relationship with Grammar Logics

It is well-known that description and modal logics are closely related: for example, ALC
can be viewed as a notational variant of the multi modal logic K [67, 17]. Related to
the logics investigated here are grammar logics [21], a class of propositional multi modal
logics where the accessibility relations are “axiomatised” through a grammar. More pre-
cisely, for σi, τ j modal parameters, the production rule σ1 . . .σm→ τ1 . . .τn can be viewed
as an abbreviation for the axioms

[σ1] . . . [σm]p⇒ [τ1] . . . [τn]p,

or as being a notational variant for the role inclusion axiom

τ1 . . .τn v̇ σ1 . . .σm.

Analogously to the description logic case, the semantics of a grammar logic is defined by
taking into account only those frames/relational structures that “satisfy the grammar”.

Grammars are traditionally organised in (refinements of) the Chomsky hierarchy (see
any textbook on formal languages, e.g., [28]), which also induces classes of grammar
logics. For example, the class of context free grammar logics is the class of those propo-
sitional multi modal logics where the accessibility relations are axiomatised through a
context free grammar. Unsurprisingly, the expressiveness of the grammars influences the
expressiveness of the corresponding grammar logics. It was shown that satisfiability of
regular grammar logics is ExpTime-complete [18], whereas this problem is undecidable
for context free grammar logics [4, 5]. The latter result is closely related to the undecid-
ability proof in [78]. In this paper, we are concerned with

• grammars that are not regular, but we do not allow for arbitrary context-free gram-
mars (or any known normal forms thereof), and

• multi modal logics that provide a converse operator on modal parameters. That
is, for σ a modal parameter, both [σ]ϕ and [σ−]ϕ are formulae of our logic, and
we allow mixtures of converse and atomic modal parameters in the rules of the
grammar. Moreover, SH +I Q provides graded modalities that restrict the number
of accessible worlds, see, e.g., [74, 44].

24

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

As a consequence of the first point, we could not re-use the technique from [4, 5] for
our undecidability proof: we could not reduce the emptiness problem for the intersection
of context-free grammars to the satisfiability of SH +I Q -concepts because SH +I Q ’s
syntactic restriction on role inclusion axioms means that we cannot capture all context-
free grammars. However, we can capture “some” context-freeness: our undecidability
proof in Section 3.3 is by a reduction of the undecidable domino problem [8], and is
heavily based on the language {(ab)n(cd)n | n ≥ 0} to enforce a model with a “grid”
structure. Although we were not able to construct a grammar for this language directly
using only productions of the form R→RS or R→ SR, we used a grammar G such that the
language generated by G, when intersected with (ab)∗(cd)∗, equals {(ab)n(cd)n | n≥ 0}.
This grammar G contains the four production rules

D → AD,
A → AC,
C → BC,
B → BD, A→ a, . . .D→ d

and can be found in four versions as the last axioms of RD in Figure 2, where we use xi,
yi, and their inverses instead of A, . . . ,B.

3.2.2 Role value maps

The role inclusion axioms we investigate here are closely related to role value maps [14,
69], i.e., concepts of the form R1 . . .Rm ṽ S1 . . .Sn for Ri, Si roles. The semantics of these
concepts is defined as follows:

(R1 . . .Rm ṽ S1 . . .Sn)
I = {x ∈ ∆I | (R1 . . .Rm)I (x)⊆ (S1 . . .Sn)

I (x)},

where (R1 . . .Rm)I (x) denotes the set of those y ∈ ∆I that are reachable from x via RI
1 ◦

. . .◦RI
m.

Thus the role inclusion axiom RS v̇ T is equivalent to the general concept inclusion
axiom > v̇ (RS ṽ T), i.e., both axioms have the same models. The role value maps used
to show the undecidability of KL-ONE [69] are of a more general form than (RS ṽ T),
i.e., they use role chains of unbounded length on both sides of ṽ, and there is no direct
translation of the undecidability proof in [69] to our logic.

3.3 SH +I Q is undecidable

Due to the syntactic restriction on role inclusion axioms, neither the undecidability proof
for ALC with context-free or linear grammars in [4, 5, 18] nor the one for ALC with
role boxes [78] can be adapted to prove undecidability of SH +I Q satisfiability. In the
following, we reduce the (undecidable) domino problem [8] to SH +I Q satisfiability.
This problem asks whether, for a set of domino types, there exists a tiling of an IN2 grid
such that each point of the grid is covered with exactly one of the domino types, and
adjacent dominoes are “compatible” with respect to some predefined criteria.

25

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

v0

v0

HI :

x0

x0

x0

x1

v2 v1

v1

v1

h1 h0 h3

h1

h1

h0

h0

y0

y0

x1

y1

y1

Figure 1: A staircase model and the implications of the last group of axioms in RD .

Definition 5 A domino system D = (D,H,V) consists of a non-empty set of domino types
D = {D1, . . . ,Dn}, and of sets of horizontally and vertically matching pairs H ⊆ D×D
and V ⊆ D×D. The problem is to determine if, for a given D , there exists a tiling of an
IN× IN grid such that each point of the grid is covered with a domino type in D and all
horizontally and vertically adjacent pairs of domino types are in H and V respectively,
i.e., a mapping

t : IN× IN→ D such that, for all m,n ∈ IN, 〈t(m,n), t(m+1,n)〉 ∈ H and
〈t(m,n), t(m,n+1)〉 ∈V.

Given a domino system D , the problem of determining if there exists a tiling for D is
known to be undecidable [8].

In Figure 2, for a domino system D , we define a SH +I Q -concept CD , a terminology
TD (that can be internalised, see Theorem 4), and a generalised role hierarchy RD such
that D has a tiling iff CD is satisfiable w.r.t. RD and TD . For better readability, we use
C⇒ D as an abbreviation for ¬CtD.

Ensuring that a point is associated with exactly one domino type, that it has at most
one vertical and at most one horizontal successor, and that these successors satisfy the
horizontal and vertical matching conditions induced by H and V is standard and is done
in the first GCI of TD .

The next step is rather special: we do not force a grid structure, but a structure with
“staircases”, which is illustrated in Figure 1. To this purpose, we introduce four sub-roles
v0, . . . ,v3 of v and four sub-roles h0, . . . ,h3 of h (see first line of RD), and ensure that we
only have “staircases”. For each i ∈ {0, . . . ,3}, an i-staircase is an alternating chain of vi

and hi edges, without any other v j- or h j-successors. We use concepts HI and V I for points
on the x-axis and y-axis respectively. At each point on the x-axis, two staircases start that
need not meet again, one i-staircase starting with vi and one i	 1-staircase starting with
hi	1 (we use ⊕ and 	 to denote addition and subtraction modulo four); points on the

26

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

y-axis exhibit a symmetrical behaviour. The second GCI in TD introduces the concept I
for all “initial” points, and then the third GCI ensures the staircase structure. It contains
four implications: one for the vertical and one for the horizontal successorships, and these
two implications once for the “non-initial” points (i.e., instances of ¬I), and once for the
“initial points” (i.e., instances of HI or V I).

It remains to make sure that two elements b, b′ representing the same point in the grid
have the same domino type associated with them, where b and b′ “represent the same
point” if there is an n and an instance a of I such that each of them is reachable following
a staircase starting at a for n steps, i.e., if there is

• a vihi-path (resp. hivi-path) of length 2n from a to b, and

• a hi	1vi	1-path (resp. vi⊕1hi⊕1-path) of length 2n from a to b′.

To this purpose, we add super roles xi of hi and yi of vi (for which we use dashed arrows
in Figure 1), and the last group of role inclusion axioms in RD . These role inclusion
axioms ensure appropriate, additional role successorships between elements, and we use
the additional roles xi and yi since we only want to have at most one vi or hi-successor.
For each 2 staircases starting at the same element on one of the axes, these role inclusions
ensure that each pair of elements representing the same point is related by yi. That is,
each element on an i⊕1-staircase that is an xi⊕1-successor is related via yi to the element
on the i-staircase (which is a vi-successor) representing the same point (see Figure 1).

To see this, start by considering the consequences of the role inclusion axioms for
elements representing the four points (1,0), (2,0), (1,1) and (2,1). The elements repre-
senting (1,0) and (2,1) are related via h3v3 and v0h0, and as we cannot force these two
paths to end in the same element, we might have two elements representing (2,1). From
the axioms h3 v̇ x3, v3 v̇ y3, v0 v̇ y0 and h0 v̇ x0, we see that (1,0) and (2,1) are also
related via x3y3 and y0x0. Using the axiom y−0 x3 v̇ x3 first, then x−0 x3 v̇ x−0 , and finally
x−0 y3 v̇ y3, we also see that, if there are two elements representing the point (2,1), then
they are related via y3. Next, consider elements representing the four points (2,1), (2,2),
(3,1) and (3,2), start with the axiom y−0 y3 v̇ y−0 , and then continue to work through the
same role inclusion axioms as above. Repeating this argumentation, all elements on these
two staircases that represent the same point can be seen to be related via the relation y3.
From an analogous argumentation for other pairs of staircases, using corresponding sets
of role inclusion axioms, it follows that the last GCI in TD ensures that two elements
representing the same point in the grid do indeed have the same domino type associated
with them.

The above observations imply that the concept CD is satisfiable w.r.t. TD and RD iff
D has a solution. Hence, together with Theorem 4, we have the following:

Theorem 6 Satisfiability of SH +I Q -concepts w.r.t. generalized role hierarchies is un-
decidable.

As mentioned above, the usage of inverse roles on the right hand side in RIAs of RD
is of no importance: we can replace these RIAs with equivalent ones with role names on
their right hand side, e.g., we can replace x−i⊕1xi v̇ x−i⊕1 with x−i xi⊕1 v̇ xi⊕1. However,
we have chosen the representation in Figure 2 to make the relationship with the grammar
from Section 3.2.1 more clear.

27

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

TD := { >
.
= (t

1≤i≤n
Di)u (u

1≤i< j≤n
¬(DiuD j))u

u
1≤i≤n

Di⇒ ((61v.>)u (∀v. t
(Di,D j)∈V

D j))u

u
1≤i≤n

Di⇒ ((61h.>)u (∀h. t
(Di,D j)∈H

D j),

I
.
= HItV I,

>
.
= u

0≤i≤3
(∃v−i .>u¬I)⇒

(
∃hi.¬Iuu

j
∀v j.⊥u u

j 6=i
∀h j.⊥)

)
u

(∃h−i .>u¬I)⇒
(
∃vi.¬Iu u

j 6=i
∀v j.⊥uu

j
∀h j.⊥)

)
u

(∃h−i .>uHI)⇒
(
∃vi.¬Iu∃hi	1.HIu

u
j 6=i	1

∀h j.⊥u u
j 6=i
∀v j.⊥

)
u

(∃v−i .>uVI)⇒
(
∃hi.¬Iu∃vi⊕1.VIu

u
j 6=i⊕1

∀v j.⊥u u
j 6=i
∀h j.⊥

)
,

>
.
= u

0≤i≤3
u

1≤ j≤n
∃x−i⊕1.>⇒ (D j⇒∀yi.D j)}

CD := HIuV Iu∃h0.HIu∃v1.V I

RD := {vi v̇ v, hi v̇ h, vi v̇ yi, hi v̇ xi, | 0≤ i≤ 3}∪

{ x−i⊕1yi v̇ yi,

x−i⊕1xi v̇ x−i⊕1,

y−i⊕1xi v̇ xi,

y−i⊕1yi v̇ y−i⊕1 | 0≤ i≤ 3}

Figure 2: Reduction terminology, generalised role hierarchy, and concept.

3.4 R I Q is decidable

In this section, we show that SH I Q with regular role hierarchies is decidable, where
“regular” is both a restriction and a generalisation of “generalised”. On the one hand, we
restrict role hierarchies to be acyclic, where acyclic role hierarchies still allow for RIAs
of the form RS v̇ S, SR v̇ S, SS v̇ S, and R− v̇ R. Moreover, for convenience of proofs,
we restrict our attention to RIAs with a role name on their right hand side. As mentioned
above, this is of no importance. On the other hand, we also allow for axioms of the form
R1 . . .RnS v̇ S and SR1 . . .Rn v̇ S (for SH +I Q , we restricted n to be 1). Finally, we also
allow for statements that force roles to be symmetric, i.e., in contrast to the decidable case
in [33], regularity also allows for RIAs of the form Inv(S) v̇ S.

We present a tableau-based algorithm that decides satisfiability of R I Q -concepts
w.r.t. regular role hierarchies, and therefore also subsumption in R I Q and, with The-

28

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

orem 4, both inferences w.r.t. terminologies. The FaCT system [30] was extended to
use the algorithm presented in this section, and the empirical results are reported in Sec-
tion 3.5.

The algorithm tries to construct, for a R I Q -concept C, a tableau for C, that is, an
abstraction of a model of C. Given the appropriate notion of a tableau, it is then quite
straightforward to prove that the algorithm is a decision procedure for R I Q -satisfiability.
Before specifying this algorithm, we translate the role hierarchy into non-deterministic
automata which are used both in the definition of a tableau and in the tableau algorithm.
Intuitively, an automaton is used to memorise the path between an object x that has to
satisfy a concept of the form ∀R.C and other objects, and then to determine which of
these objects must satisfy C.14

In the following definition of general role hierarchies, we use a strict partial order ≺
(irreflexive, transitive, and antisymmetric) on roles to ensure acyclicity.

Definition 7 Let ≺ be a strict partial order on role names. A RIA w v̇ R is ≺-regular if

• R is a role name,

• w = RR,

• w = R−,

• w = S1 . . .Sn and Si ≺ R, for all 1≤ i≤ n,

• w = RS1 . . .Sn and Si ≺ R, for all 1≤ i≤ n, or

• w = S1 . . .SnR and Si ≺ R, for all 1≤ i≤ n.

A role hierarchy R is regular if there exists a strict partial order ≺ such that each RIA in
R is≺-regular. The semantics is defined analogously to the semantics of generalised role
hierarchies, i.e., I satisfies a RIA w v̇ R if wI ⊆ RI .

R I Q is obtained from SH +I Q by replacing generalised role hierarchies with regu-
lar role hierarchies, where simple role names are inductively defined as follows:15

• every role name that does not occur on the right hand side of a RIA is simple,

• a role name S is simple if, for each w v̇ S ∈ R , w = R for R a simple role or the
inverse of a simple role.

An inverse role S− is simple if S is simple.

Please note that, due to the third restriction in the definition of R-compatibility, we also
restrict v* to be acyclic. However, this is not a serious restriction since, for R containing
v* cycles, we can simply choose one role R from each cycle and replace all other roles
on this cycle with R, both in the input role hierarchy and the input concept.

For the following considerations, it is worthwhile to recall that, for w = R1 . . .Rm and
Ri roles, Inv(w) = Inv(Rm) . . . Inv(R1). The following Lemma is a direct consequence of
the definition of the semantics.

14This technique together with the relationship between automata and regular languages is the reason
why we called these role hierarchies “regular”.

15We need to re-define “simple” roles because of the more general form of RIAs.

29

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

Lemma 8 If I is a model of R with S− v̇ S ∈ R and w v̇ S ∈ R , then Inv(w)I ⊆ SI .

3.4.1 Translating RIAs into automata

Next, we will define, for a regular role hierarchy R and a (possibly inverse) role S occur-
ring in R , a non-deterministic finite automaton (NFA) BS which captures all implications
between (paths of) roles and S that are consequences of R . To make this clear, before we
define BS, we formulate the lemma which we are going to prove for it.

Proposition 9 I is a model of R if and only if, for each (possibly inverse) role S occurring
in R , each word w ∈ L(BS), and each 〈x,y〉 ∈ wI , we have 〈x,y〉 ∈ SI .

In [33], to construct a similar automaton for a more restricted logic, we first unfolded
R into a set of implications between regular expressions, and then constructed the au-
tomata from these implications. Here, we show how to build these automata directly,
which yields an easier construction.

In the following, we use NFAs with ε-transitions in a rather informal way (see, e.g.,

[28] for a more details), e.g., we use p
R
→ q to denote that there is a transition from a state

p to a state q with the letter R instead of introducing transition relations formally. The
automata BS are defined in three steps.

Definition 10 Let C0 be a R I Q -concept and R a regular role hierarchy.
For each role name R occurring in R or C0, we first define the NFA AR as follows:

AR contains a state iR and a state fR with the transition iR
R
→ fR. The state iR is the only

initial state and fR is the only final state. Moreover, for each w v̇ R ∈ R , AR contains the
following states and transitions:

1. if w = RR, then AR contains fR
ε
→ iR, and

2. if w = R1 · · ·Rn and R1 6= R 6= Rn, then AR contains

iR
ε
→ iw

R1→ f 1
w

R2→ f 2
w

R3→ . . .
Rn→ f n

w
ε
→ fR,

3. if w = RR2 · · ·Rn, then AR contains

fR
ε
→ iw

R2→ f 2
w

R3→ f 3
w

R4→ . . .
Rn→ f n

w
ε
→ fR,

4. if w = R1 · · ·Rn−1R, then AR contains

iR
ε
→ iw

R1→ f 1
w

R2→ f 2
w

R3→ . . .
Rn−1
→ f n−1

w
ε
→ iR,

where all f i
w, iw are assumed to be distinct.

In the next step, we use a mirrored copy of NFAs: this is a copy of an NFA in which
we have carried out the following modifications: we

• make final states to non-final but initial states,

30

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

• make initial states to non-initial but final states,

• replace each transition p
S
→ q for S a (possibly inverse) role S with q

Inv(S)
→ p, and

• replace each transition p
ε
→ q with q

ε
→ p.

Secondly, we define the NFAs ÂR as follows:

• if R− v̇ R 6∈ R , then ÂR := AR,

• if R− v̇ R ∈ R , then ÂR is obtained as follows: first, take the disjoint union16 of AS

with a mirrored copy of AS. Secondly, make iR the only initial state, fR the only final
state. Finally, for f ′R the copy of fR and i′R the copy of iR, add transitions iR

ε
→ f ′R,

f ′R
ε
→ iR, i′R

ε
→ fR, and fR

ε
→ i′R.

Thirdly, the NFAs BR are defined inductively over ≺:

• if R is minimal w.r.t. ≺ (i.e., there is no R′ with R′ ≺ R), we set BR := ÂR.

• otherwise, BR is the disjoint union of ÂR with a copy B ′S of BS for each transition

p
S
→ q in ÂR with S 6= R. Moreover, for each such transition, we add ε-transitions

from p to the initial state in B ′S and from the final state in B ′S to q, and we make iR
the only initial state and fR the only final state in BR.

Finally, the automaton BR− is a mirrored copy of BR.

Please note that the inductive definition BR is well-defined since the acyclic relation
≺ is used to restrict the dependencies between roles.

We have kept the construction of BS as simple as possible. If one wants to construct an
equivalent NFA without ε-transitions or which is deterministic, then there are well-known
techniques to do this [28]. Recall that elimination of ε-transitions can be carried out
without increasing the number of an automaton’s states, whereas determinisation might
yield an exponential blow-up.

Lemma 11 For R a role, the size of BR is bounded exponentially in the depth

dR := max{n | there are S1 ≺ . . .≺ Sn,ui,vi with uiSi−1vi v̇ Si ∈ R }

and thus in the size of R . Moreover, there are R and R such that the number of states in
BR is 2dR .

Proof: Obviously, the size of AR and ÂR is linear in

bR = max{|w1|+ . . .+ |wk| | there is S with wi v̇ S ∈ R for all 1≤ i≤ n}.

Each automaton BR is a “tree” of automata AS whose

• outdegree is bounded by bR and

16A disjoint union of two automata is the disjoint union of their states, transition relations, etc.

31

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

• whose depth is bounded by dR .

Hence the number of BR’s states is bounded exponentially in dR and, since dR is linear
in the size of R , also bounded exponentially in the size of R .

Next, it is easily verified that, for the following regular role hierarchy Rn, the automa-
ton BSn has 2n+1 states and the size of Rn is linear in n:

Rn = {Si−1Si v̇ Si, SiSi−1 v̇ Si | 1≤ i≤ n}

We will consider ways to avoid this exponential blow-up in Section 3.4.4, and continue
with the proof of Proposition 9. In this proof, we will use the following lemma, which is
an immediate consequence of the definition of BS and of mirrored copies of BS.

Lemma 12 1. S ∈ L(BS) and, if w v̇ S ∈ R, then w ∈ L(BS).

2. If S is a simple role, then L(BS) = {R | R v* S}.

3. If
←−
A is a mirrored copy of an NFA A , then L(

←−
A) = {Inv(w) | w ∈ L(A)}.

Proof of Proposition 9. The “if” direction is easily proved by contraposition. If I is not a
model of R , then there is some RIA w v̇ S ∈ R not satisfied by I . Hence there are some
x,y such that 〈x,y〉 ∈ wI but 〈x,y〉 6∈ SI . By Lemma 12.1, w ∈ L(BS), and we are done.

For the “only-if” direction, let I be a model of R , S a role, w∈ L(BS), and 〈x,y〉 ∈wI .
We prove 〈x,y〉 ∈ SI by well-founded induction on ≺. Obviously, we can restrict our
attention to a role name S due to Lemma 12.3 and since BS− is defined as a mirrored copy
of BS.

First, we observe that w ∈ L(BS) induces a decomposition w = w1 . . .wk and word
ŵ = S1 . . .Sk such that

• Si ≺ S or Si = S for all 1≤ i≤ k,

• ŵ ∈ L(ÂS), and

• wi ∈ L(BSi).

Next, 〈x,y〉 ∈ wI implies that there are xi with x = x0, y = xk, and 〈xi,xi+1〉 ∈ wI
i+1, for

each 0≤ i < k. By induction, 〈xi,yi〉 ∈ SI
i and thus 〈x,y〉 ∈ ŵI .

1. If SS v̇ S 6∈ R and S− v̇ S 6∈ R , then, by construction, ŵ is of the form

ŵ = u1 . . .umxv1 . . .vn and uiS v̇ S ∈ R , for each 1≤ i≤ m
x v̇ S ∈ R or x = S

Sv j v̇ S ∈ R , for each 1≤ j ≤ n

Thus I being a model of R implies that 〈x,y〉 ∈ SI .

32

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

2. If SS v̇ S ∈ R and S− v̇ S 6∈ R , then, by construction, ŵ is of the form

ŵ = (u(1)
1 . . .u(1)

m1 x(1)v(1)
1 . . .v(1)

n1) . . .(u(`)
1 . . .u(`)

m` x(`)v(`)
1 . . .v(`)

n`) and

u(k)
i S v̇ S ∈ R , for each 1≤ i≤ m, 1≤ k ≤ `

x(k) v̇ S ∈ R or x(k) = S for each 1≤ k ≤ `

Sv(k)
j v̇ S ∈ R , for each 1≤ j ≤ n, 1≤ k ≤ `

Again, I being a model of R implies that 〈x,y〉 ∈ SI .

3. If SS v̇ S 6∈ R and S− v̇ S ∈ R , then BS is the disjoint union of AS with a mirrored
copy of AS and additional ε-transitions between the final and initial state and their
copies. By construction, we have

ŵ = u1 . . .umxv1 . . .vn and
uiS v̇ S ∈ R or S Inv(ui) v̇ S ∈ R for each 1≤ i≤ m

x v̇ S ∈ R or Inv(x) v̇ S ∈ R or x = S or x = S−

Sv j v̇ S ∈ R or Inv(v j)S v̇ S ∈ R, for each 1≤ j ≤ n

In both cases, I being a model of R implies that 〈x,y〉 ∈ SI .

4. If SS v̇ S ∈ R and S− v̇ S ∈ R , then we are in a mixture of the cases (2) and (3),
i.e.,

ŵ = ŵ1 . . . ŵr

and each ŵi is accepted by a run through BS which neither uses the ε-transition from
fS to iS nor the corresponding one in the mirrored copy of ÂS. We can decompose
each ŵi as we have decomposed ŵ in Case (3), and conclude that I being a model
of R implies that 〈x,y〉 ∈ SI .

3.4.2 A Tableau for R I Q

In the following, if not stated otherwise, C,D (possibly with subscripts) denote R I Q -
concepts, R,S (possibly with subscripts) roles, and R a regular role hierarchy.

We start by defining fclos(C0,R), the closure of a concept C w.r.t. a regular role hier-
archy R . Intuitively, this contains all relevant sub-concepts of C together with universal
value restrictions over sets of role paths described by an NFA. We use NFAs in univer-
sal value restrictions to memorise the path between an object that has to satisfy a value
restriction and other objects. To do this, we “push” this NFA-value restriction along this
path while the NFA gets “updated” with the path taken so far. For this “update”, we use
the following definition.

Definition 13 For B an NFA and q a state of B , B(q) denotes the NFA obtained from B
by making q the (only) initial state of B , and we use q

S
→ q′ ∈ B to denote that B has a

transition q
S
→ q′.

33

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

Without loss of generality, we assume all concepts to be in NNF, that is, negation
occurs in front of concept names only. Any R I Q -concept can easily be transformed
into an equivalent one in NNF by pushing negations inwards using a combination of
DeMorgan’s laws and the following equivalences:

¬(∃R.C) ≡ (∀R.¬C) ¬(∀R.C) ≡ (∃R.¬C)
¬(6nR.C) ≡ (>(n+1)R.C) ¬(>(n+1)R.C) ≡ (6nR.C)

¬(>0R.C) ≡ ⊥

We use ¬̇C for the NNF of ¬C. Obviously, the length of ¬̇C is linear in the length of C.
For a concept C0, clos(C0) is the smallest set that contains C0 and that is closed under

sub-concepts and ¬̇. The set fclos(C0,R) is then defined as follows:

fclos(C0,R) := clos(C0)∪{∀BS(q).D | ∀S.D ∈ clos(C0) and
BS has a state q}.

It is not hard to show and well-known that the size of clos(C0) is linear in the size of
C0. For the size of fclos(C0,R), we have seen in Lemma 11 that, for a role S, the size of
BS can be exponential in the depth of R . Since there are at most linearly many concepts
∀S.D, this yields a bound for the cardinality of fclos(C0,R) that is exponential in the
depth of R and linear in the size of C0. Investigating whether this exponential blow-up
can be avoided will be part of future work. So far, we only define in Section 3.4.4 a further
syntactic restriction which avoids this exponential blow-up.

We are now ready to define tableaux as a useful abstraction of models.

Definition 14 T = (S,L,E) is a tableau for C0 w.r.t. R iff

• S is a non-empty set,

• L : S→ 2fclos(C0,R) maps each element in S to a set of concepts and

• E : RC0,R → 2S×S maps each role to a set of pairs of elements in S.

Furthermore, for all s, t ∈ S, C,C1,C2 ∈ fclos(C0,R), and R,S ∈ RC0,R , T satisfies:

(P0) there is some s ∈ S with C0 ∈ L(s),

(P1) if C ∈ L(s), then ¬C /∈ L(s),

(P2) if C1uC2 ∈ L(s), then C1 ∈ L(s) and C2 ∈ L(s),

(P3) if C1tC2 ∈ L(s), then C1 ∈ L(s) or C2 ∈ L(s),

(P4a) if ∀B(p).C ∈ L(s), 〈s, t〉 ∈ E(S), and p
S
→ q ∈ B(p), then ∀B(q).C ∈ L(t),

(P4b) if ∀B.C ∈ L(s) and ε ∈ L(B), then C ∈ L(s),

(P5) if ∃S.C ∈ L(s), then there is some t with 〈s, t〉 ∈ E(S) and C ∈ L(t),

(P6) if ∀S.C ∈ L(s), then ∀BS.C ∈ L(s),

(P7) 〈x,y〉 ∈ E(R) iff 〈y,x〉 ∈ E(Inv(R)),

(P8) if (6nS.C) ∈ L(s), then]ST (s,C) 6 n,

34

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

(P9) if (>nS.C) ∈ L(s), then]ST (s,C) > n,

(P10) if (6nS.C) ∈ L(s) and 〈s, t〉 ∈ E(S′) for some S′ ∈ L(BS), then C ∈ L(t) or ¬̇C ∈
L(t),

where ST (s,C) := {t ∈ S | 〈s, t〉 ∈ E(S′) for some S′ ∈ L(BS) and C ∈ L(t)}.

Lemma 15 A R I Q -concept C0 is satisfiable w.r.t. R iff there exists a tableau for C0 w.r.t.
R .

Proof: For the if direction, let T = (S,L,E) be a tableau for C0 w.r.t. R . We extend
the relational structure of T and then prove that this indeed gives a model. More precisely,
a model I = (∆I , ·I) of D and R can be defined as follows: we set ∆I := S, AI := {s |
A ∈ L(s)} for concept names A in clos(C0), and for roles names R, we set

RI := {〈s0,sn〉 ∈ (∆I)2 | there are s1, . . . ,sn−1 with 〈si,si+1〉 ∈ E(Si+1)
for 0≤ i≤ n−1 and S1 · · ·Sn ∈ L(BR)}

The semantics of complex concepts is given through the definition of the R I Q semantics.
Due to Lemma 12.3 and (P7), the semantics of inverse roles can either be given directly
as for role names, or by setting (R−)I = {〈y,x〉 | 〈x,y〉 ∈ RI}.

First, we show that I is a model of R and C0. Due to Proposition 9, it suffices to
prove that, for each (possibly inverse) role S, each word w ∈ L(BS), and each 〈x,y〉 ∈ wI ,
we have 〈x,y〉 ∈ SI . Let w ∈ L(BS) and 〈x,y〉 ∈ wI . For w = S1 . . .Sn, this implies the
existence of yi such that y0 = x, yn = y, and 〈yi−1,yi〉 ∈ SI

i for each 1≤ i≤ n. For each i,
we define a word wi as follows:

• if 〈yi−1,yi〉 ∈ E(Si), then set wi := Si.

• otherwise, there is some vi = T (i)
1 . . .T (i)

ni ∈ L(BSi) and there are y(i)
j such that yi−1 =

y(i)
0 , yi = y(i)

ni , and 〈y(i)
j−1,y

(i)
j 〉 ∈ E(T (i)

j) for each 1 ≤ j ≤ ni. In this case, we set
wi := vi.

Let ŵ := w1 . . .wn. By construction of BS from ÂS, w∈ L(BS) implies that ŵ∈ L(BS). For

ŵ = U1 . . .Un′ , we can thus re-name the yi and y(i)
j to zi such that we have z0 = x, zn = y,

and 〈zi−1,zi〉 ∈ E(Ui). Hence, by definition of ·I , we have 〈x,y〉 ∈ SI .

Secondly, we prove that I is a model of C0. We show that C ∈L(s) implies s ∈CI for
each s∈ S and each C ∈ clos(C0). Together with (P0), this implies that I is a model of C0.
This proof can be given by induction on the length of concepts, where we count neither
negation nor integers in number restrictions. The only interesting cases are C = (6nS.E)
and C = ∀S.E (for the other cases, see [42, 32]):

• If (6nS.E) ∈ L(s), then (P8) implies that #ST (s,E) ≤ n. Moreover, since S is
simple, Lemma 12.2 implies that L(BS) = {S′ | S′ v* S}, and thus (P10) implies that,
for all t, if 〈s, t〉 ∈ SI , then E ∈L(t) or ¬̇E ∈L(t). By induction EI = {t |E ∈L(t)},
and thus s ∈ (6nS.E)I .

35

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

• Let ∀S.E ∈ L(s) and 〈s, t〉 ∈ SI . From (P6) we have that ∀BS.E ∈ L(s). By defini-
tion of SI , there are S1 . . .Sn ∈ L(BS) and si with s = s0, t = sn, and 〈si−1,si〉 ∈E(Si).
Applying (P4a) n times, this yields ∀BS(q).E ∈ L(t) for q a final state of BS. Thus
(P4b) implies that E ∈ L(t). By induction, t ∈ E I , and thus s ∈ (∀S.E)I .

For the converse, for I = (∆I , ·I) a model of C0 w.r.t. R , we define a tableau T =
(S,L,E) for C0 and R as follows:

S := ∆I ,
E(R) := RI , and
L(s) := {C ∈ clos(C0) | s ∈CI}∪

{∀BS.C | ∀S.C ∈ clos(C0) and s ∈ (∀S.C)I}∪
{∀BR(q).C ∈ fclos(C0,R) | for all S1 · · ·Sn ∈ L(BR(q)),

s ∈ (∀S1.∀S2. · · ·∀Sn.C)I and
if ε ∈ L(BR(q)), then s ∈CI}

We have to show that T satisfies each (Pi). We restrict our attention to the only new cases
(P4) and (P6).

For (P6), if ∀S.C ∈ L(s), then s ∈ (∀S.C)I and thus ∀BS.C ∈ L(s) by definition of T .
For (P4a), let ∀B(p).C ∈L(s) and 〈s, t〉 ∈ E(S) = SI . Assume that there is a transition

p
S
→ q in B(p) and ∀B(q).C 6∈ L(t). By definition of T , this can have two reasons:

• there is a word S2 . . .Sn ∈ L(B(q)) and t 6∈ (∀S2. . . .∀Sn.C)I . However, this implies
that SS2 . . .Sn ∈ L(B(p)) and thus that s ∈ (∀S.∀S2. . . .∀Sn.C)I , which contradicts,
together with 〈s, t〉 ∈ SI , the definition of the semantics of R I Q concepts.

• ε ∈ L(B(q)) and t 6∈ CI . This implies that S ∈ L(B(p)) and thus contradicts s ∈
(∀S.C)I .

Hence ∀B(q).C 6∈ L(t).
For (P4b), ε ∈ L(B(p)) implies s ∈CI by definition of T , and thus C ∈ L(s).

3.4.3 The Tableau Algorithm

In this section, we present a tableau algorithm that tries to construct, for an input R I Q -
concept C0 and a regular role hierarchy R , a tableau for C0 w.r.t. R . We prove that
this algorithm constructs a tableau for C0 and R iff there exists a tableau for C0 and R ,
and thus decides satisfiability of R I Q concepts w.r.t. regular role hierarchies and, using
Lemma 3, also w.r.t. terminologies.

This algorithm generates a completion tree, a structure that will be unravelled to an
(infinite) tableau for the input concept. As usual, in the presence of transitive roles, block-
ing is employed to ensure termination of the algorithm. In the additional presence of
inverse roles, blocking is dynamic, i.e., blocked nodes (and their sub-branches) can be
un-blocked and blocked again later. In the further, additional presence of number restric-
tions, pairs of nodes are blocked rather than single nodes [42]. The blocking conditions
as they are presented here are, clearly, too strict. As a consequence, blocking may occur

36

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

later than necessary, and thus we end up with a search space that is larger than necessary.
In [32], we have shown how to loosen the blocking condition for SH I Q while retaining
correctness of the algorithm. Here, we focus on the decidability of R I Q , and defer a
similar loosening for R I Q to future work.

Definition 16 A completion tree T for a R I Q concept C0 and a regular role hierarchy R
is a tree, where each node x is labelled with a set L(x)⊆ fclos(C0,R) and each edge 〈x,y〉
from a node x to its successor y is labelled with a non-empty set L(〈x,y〉) of (possibly
inverse) roles occurring in C0 and R . Finally, completion trees come with an explicit
inequality relation 6

.
= on nodes which is implicitly assumed to be symmetric.

If R∈L(〈x,y〉) for a node x and its successor y, then y is called an R-successor of x and
x is called an Inv(R)-predecessor of y. If y is an R-successor or an Inv(R)-predecessor
of x, then y is called an R-neighbour of x. Finally, ancestor is the transitive closure of
predecessor and descendant is the transitive closure of successor.

For a role S, a concept C and a node x in T we define ST(x,C) by

ST(x,C) := {y | for some S′ v* S, y is an S′-neighbour of x and C ∈ L(y)}.

A node is blocked iff it is either directly or indirectly blocked. A node x is directly
blocked iff none of its ancestors are blocked, and it has ancestors x′, y and y′ such that

1. x is a successor of x′ and y is a successor of y′ and

2. L(x) = L(y) and L(x′) = L(y′) and

3. L(〈x′,x〉) = L(〈y′,y〉).

If there are no descendants x′′, y′′ of x′ and y′ with these properties, then we say that y
blocks x.

A node y is indirectly blocked if one of its ancestors is blocked.
For a node x, L(x) is said to contain a clash if

• ⊥ ∈ L(x) or

• for some concept name A, {A,¬A} ⊆ L(x) or

• there is some concept (6nS.C) ∈ L(x) and {y0, . . . ,yn} ⊆ ST(x,C) with yi 6
.
= y j for

all 0≤ i < j ≤ n.

A completion tree is clash-free if none of its nodes contains a clash, and it is complete if
no rule from Figure 3 can be applied to it.

Given C0 (in NNF) and R , the algorithm initialises a completion tree consisting only
of a root node x0 labelled with {C0}. Then this tree is expanded by repeatedly applying the
expansion rules from Figure 3, stopping when a clash occurs. The algorithm answers “C0

is satisfiable w.r.t. R ” iff the expansion rules can be applied in such a way that they yield
a complete and clash-free completion tree, and “C0 is unsatisfiable w.r.t. R ” otherwise.

All but the ∀i-rules have been used before for fragments of R I Q , e.g., SH I Q [34,
32], and the three ∀i-rules are the obvious counterparts to the tableau conditions (P4a).
(P4b), and (P6).

37

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

u-rule: if C1uC2 ∈ L(x), x is not indirectly blocked, and
{C1,C2} 6⊆ L(x)

then L(x)−→ L(x)∪{C1,C2}
t-rule: if C1tC2 ∈ L(x), x is not indirectly blocked, and

{C1,C2}∩L(x) = /0
then L(x)−→ L(x)∪{E} for some E ∈ {C1,C2}

∃-rule: if ∃S.C ∈ L(x), x is not blocked, and
x has no S-neighbour y with C ∈ L(y)

then create a new node y with
L(〈x,y〉) := {S} and L(y) := {C}

∀1-rule: if ∀S.C ∈ L(x), x is not indirectly blocked, and
∀BS.C 6∈ L(x)

then L(x)−→ L(x)∪{∀BS.C}

∀2-rule: if ∀B(p).C ∈ L(x), x is not indirectly blocked, p
S
→ q in B(p),

and there is an S-neighbour y of x with ∀B(q).C /∈ L(y),
then L(y)−→ L(y)∪{∀B(q).C}

∀3-rule: if ∀B.C ∈ L(x), x is not indirectly blocked, ε ∈ L(B),
and C 6∈ L(x)

then L(x)−→ L(x)∪{C}
X-rule: if (6nS.C) ∈ L(x), x is not indirectly blocked, and

there is an S′-neighbour y of x with S′ v* S
and {C, ¬̇C}∩L(y) = /0

then L(y)−→ L(y)∪{E} for some E ∈ {C, ¬̇C}
>-rule: if (>nS.C) ∈ L(x), x is not blocked, and

there are no y1, . . . ,yn ∈ ST(x,C)
with yi 6

.
= y j for each 1≤ i < j ≤ n

then create n new nodes y1, . . . ,yn with L(〈x,yi〉) = {S},
L(yi) = {C}, and yi 6

.
= y j for 1≤ i < j ≤ n.

6-rule: if (6nS.C) ∈ L(x), x is not indirectly blocked, and
#ST(x,C) > n, there are y,z ∈ ST(x,C) with
not y 6

.
= z and y is not an ancestor of z,

then 1. L(z)−→ L(z)∪L(y) and
2. if z is an ancestor of x

then L(〈z,x〉) −→ L(〈z,x〉)∪ Inv(L(〈x,y〉))
else L(〈x,z〉) −→ L(〈x,z〉)∪L(〈x,y〉)

3. remove y and the sub-tree below y

Figure 3: The Expansion Rules for the R I Q Tableau Algorithm.

38

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

As usual, we prove termination, soundness, and completeness of the tableau algo-
rithm to show that it indeed decides satisfiability of R I Q -concepts w.r.t. regular role
hierarchies.

Lemma 17 Let C0 be a R I Q -concept and R a regular role hierarchy. The tableau
algorithm terminates when started for C0 and R .

Proof: Let m =]fclos(C0,R), n the number of roles occurring in C0 and R , and nmax :=
max{n | (>nR.C) ∈ clos(C0)}. Termination is a consequence of the following properties
of the expansion rules:

1. Nodes are labelled with subsets of fclos(C0,R) and edges with sets of roles occur-
ring in C0 and R , so there are at most 22mn different possible labellings for a pair
of nodes and an edge. Therefore, if a path p is of length at least 22mn, the pair-wise
blocking condition implies the existence of a node x on p such that x is blocked.
Since a path on which nodes are blocked cannot become longer, paths are of length
at most 22mn.

2. The expansion rules never remove labels from nodes in the tree, and the only rule
that removes a node from the tree is the 6-rule.

3. Only the ∃- or the >-rule generate new nodes, and each generation is triggered by
a concept of the form ∃R.C or (>nR.C) in the label of a node x. Each of these
concepts triggers at most once the generation of at most nmax R-successors yi of x:
note that if the 6-rule subsequently causes an R-successor yi of x to be removed,
then x will have some R-neighbour z with L(z) ⊇ L(yi). This, together with the
definition of a clash, implies that the rule application which led to the generation of
yi will not be repeated. Since fclos(C0,R) contains a total of at most m ∃R.C, the
out-degree of the tree is bounded by mnmax.

Lemma 18 Let C0 be a R I Q -concept and R a regular role hierarchy. The expansion
rules can be applied to C0 and R such that they yield a complete and clash-free comple-
tion tree if and only if C0 has a tableau w.r.t. R .

For the if direction, we can unravel a complete and clash-free completion tree T in a
standard way into a tableau T , where the same technique as for SH I Q is used to make
sure that (P9) is satisfied even if two “sibling” nodes are blocked by the same node. It
is easily seen that the ∀i expansion rules make sure that the resulting structure indeed
satisfies the new tableau condition (P4a), (P4b), and (P6).

For the only-if direction, we take a tableau I of C0 and R and use it to steer the
application of the non-deterministic rules, i.e., the t-, the X- and the 6 -rule. To do
this, while building the completion tree, we define a mapping π from the nodes of the
completion tree into the tableau which satisfies the following three conditions:

L(x)⊆ L(π(x)),
if y is an S-neighbour of x, then 〈π(x),π(y)〉 ∈ E(S), and
x 6

.
= y implies π(x) 6= π(y).






(∗)

39

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

We start with π mapping the root node to some tableau element s0 with C0 in its label, and
prove that, if an expansion rule is applicable to T, then this rule can be applied in such a
way that (∗) is preserved. As a consequence of this claim, (P1), (P8), and Lemma 17, we
thus end with a complete and clash-free completion tree. For a full proof, see [31].

From Theorem 4, Lemma 15, 17, 18, and 18, we thus have the following theorem:

Theorem 19 The tableau algorithm decides satisfiability and subsumption of R I Q -
concepts with respect to regular role hierarchies and terminologies.

3.4.4 Avoiding the blow-up

In the previous section, we have presented an algorithm that decides satisfiability and
subsumption of R I Q -concepts with respect to regular role hierarchies and terminologies.
Unfortunately, compared to similar algorithms that are implemented in state-of-the-art
description logic reasoners [30, 57, 25] and behave well in many cases, we have here an
exponential blow-up: the closure fclos(C0,R) is exponential in the depth of R since we
have “unfolded” the regular role hierarchy R into trees of NFAs. While investigating
whether and how this exponential blow-up can be avoided, we observe that a further
restriction of the syntax of regular role hierarchies avoids this blow-up:

A regular role hierarchy R is called simple when, for all Si, Ti, n, m, 1 ≤ i ≤ n, and
1≤ j ≤ m, if

1. uiSivi v̇ Si+1 ∈ R and u′jTjv′j v̇ Tj+1 ∈ R ,

2. Si 6= Si+1 and Tj 6= Tj+1,

3. Sn = Tm and un 6= u′m,

then Si 6= Tj.
For a simple regular role hierarchy R , the size of each NFA BR is only polynomial in

the size of R since each NFA BS occurs at most once in BR.

Lemma 20 For a R I Q -concept C0 and a simple regular role hierarchy R , the size of
fclos(C0,R) is polynomial in the size of C0 and R .

Thus, for simple role hierarchies, the tableau algorithm presented here is of the same
worst case complexity as for SH I Q , namely 2NExpTime. A detailed investigation of the
exact complexity will be part of future work.

3.5 Evaluation of the R I Q algorithm in FaCT

In order to evaluate the practicability of the above algorithm, we have extended the DL
system FaCT [30] to deal with R I Q , and we have carried out a preliminary empirical
evaluation.

From a practical point of view, one potential problem with the R I Q algorithm is
that the number of states of automata, and hence the number of different ∀B.C concepts,
could be very large. Moreover, many of these automata could be equivalent (i.e., accept

40

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

the same languages). As blocking depends on finding ancestor nodes labelled with the
same set of concepts, the discovery of blocks could be unnecessarily delayed, and this
can lead to a serious degradation in performance [32].

The FaCT implementation addresses these possible problems by transforming all of
the initial NFAs into minimal deterministic finite automata (DFAs), using the AT&T FSM
LibraryTM for this purpose [51]. A minimal DFA is constructed for each role, the states
in each DFA are uniquely numbered, and the implementation uses concepts of the form
∀B.C, where B is the number of a state in one of the DFAs. Determinising the automata
allows standard minimisation techniques to be used [28], and because the automata are
minimal, if ∀B.C leads to the presence of ∀B ′.C in some successor node (as a result of
repeated applications of the ∀2-rule), then ∀B.C is equivalent to ∀B ′.C iff B = B ′ (and
as B and B ′ are numbers, such comparisons are very easy). Unnecessary blocking delays
are thus avoided.

The implementation is still at the “beta” stage, but it has been possible to carry out
some preliminary tests using the well-known Galen medical terminology KB [62, 30].
This KB contains 2,740 named concepts and 413 roles, 26 of which are transitive. The
roles are arranged in a relatively complex hierarchy with a maximum depth of 10. Clas-
sifying this KB using FaCT’s SH I Q reasoner takes 116s on an 800 MHz Pentium III
equipped Linux PC. Classifying the same KB using the new R I Q reasoner took a total
of 275s on the same machine. This result is encouraging as it shows that, in the case
of the Galen KB at least, using automata in ∀B.C concepts does not lead to a serious
degradation in performance. Moreover, the time taken by the R I Q reasoner includes
approximately 100s to compute the minimal deterministic automata for the role box. This
overhead could become important if optimisations of the R I Q reasoner result in even
better performance, but it should be noted that (a) this is a preprocessing step that will not
need to be repeated when the remainder of the KB is extended, modified or queried, and
(b) compared to other KBs we have seen, the Galen KB involves an unusually large and
complex role box.

The KB was then extended with several role inclusion axioms that express the propa-
gation of location across various partonomic roles. These included

hasLocation isSolidDivisionOf v̇ hasLocation

and
hasLocation isLayerOf v̇ hasLocation.

Classifying the extended KB took 280s, an increase of only 2% (3.5% if we exclude the
NFA computation time). Subsumption queries w.r.t. this KB revealed that, e.g.,

Fractureu∃hasLocation.NeckOfFemur

was implicitly a kind of

Fractureu∃hasLocation.Femur

(NeckOfFemur is a solid division of Femur), and

Ulceru∃hasLocation.GastricMucosa

41

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

was implicitly a kind of

Ulceru∃hasLocation.Stomach

(GastricMucosa is a layer of Stomach). None of these subsumption relationships held
w.r.t. the original KB. The times taken to compute these relationships w.r.t. the classified
KB could not be measured accurately as they were of the same order as a system clock
tick (10ms).

3.6 Summary and Outlook

In this section we have presented an extension of of the well-known expressive DL,
SH I Q , with RIAs of the form RS v̇ P. We have shown that this extension is undecidable
even when RIAs are restricted to the forms RS v̇ R or SR v̇ R, but that decidability can
be regained by further restricting sets of RIAs to regular ones. In the presence of inverse
roles, this is slightly tricky, and is realised here using a partial order on role names to
prevent cyclic dependencies between roles. The definition of regular sets of RIAs aimed
at being as general as possible, and still allows for RIAs of the form RS v̇ S, SR v̇ S,
SS v̇ S, and R− v̇ R.

We have presented a tableau algorithm for this DL and reported on its implementation
in the FaCT system. A preliminary evaluation suggests that the algorithm will perform
well in realistic applications and demonstrates that it can provide important additional
functionality in a medical terminology application.

Given that SH I Q is the basis of the OWL ontology language, this extension to
SH I Q could be used as the foundation for a similar extension to OWL. Although this
extension is not able to capture all interesting cases (e.g., it cannot capture the “uncle”
example), it can be seen to address many of the most common cases, and it has the great
benefit that both decidability and empirical tractability are retained.

42

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

4 A Datatype Predicate Extension to OWL

4.1 Background and Motivation

In this section, we present an OWL compatible revision of the datatype group approach
first presented in [54], in order to extend OWL datatyping with datatype predicates.

Definition 21 (Datatype Predicate) A datatype predicate (or simply predicate) p is char-
acterised by an arity a(p), and a predicate extension (or simply extension) E(p). �

Here are some examples of predicates:

1. integer is a predicate with arity a(integer) = 1 and predicate extension E(integer) =
V (integer), where V (integer) is the value space of integer. In general, datatypes
can be seen as predicates with arity 1 and predicate extensions equal to their value
spaces.

2. >int
[18] is a unary predicate, with a(>int

[18]) = 1 and E(>int
[18]) = {i ∈ E(integer) | i >

18}. We can use >int
[18] represent a derived XML Schema datatype derived from

xsd:integer, with 18 as the value of the minExclusive facet.

3. =int is a binary predicate with arity a(=int) = 2 and extension E(=int) = {〈i1, i2〉
∈ E(integer)2 | i1 = i2}.

4. sum is a predicate that does not have a fixed arity, where E(sum) = {〈i1, . . . , in〉
∈ E(integer)n | i1 = i2 + · · ·+ in} and a(sum)≥ 3.

In stating the semantics, we assume that datatype interpretations are relativised to a
predicate map.

Definition 22 (Predicate Map) We consider a predicate map Mp that is a partial map-
ping from predicate URI references to predicates. �

Example 1 Mp1 = {〈xsd:string,string〉,〈xsd:integer, integer〉,〈owlx:integerEquality,
=int〉,〈owlx:integerLargerThanx&n,>int

[n]〉} is a predicate map, where xsd:string,
xsd:integer, owlx:integerEquality and owlx:integerLargerThanx&n are predicate URI ref-
erences, string, integer and >int

[n] are unary predicates, and =int is a binary predicate.

Note that, by ‘>int
[n]’, we mean there exist a predicate >int

[n] for each integer n, which is
represented by the predicate URI owlx:integerLargerThanx&n. ♦

Similar to supported and unsupported datatype URIs, we have supported and unsup-
ported predicate URIs according to a predicate map.

Definition 23 (Supported and Unsupported Predicate URIs) Given a predicate map
Mp, a predicate URI u is called a supported predicate URI w.r.t. Mp (or simply supported
predicate URI), if there exists a predicate p s.t. Mp(u) = p (in this case, p is called a
supported predicate w.r.t. Mp); otherwise, u is called an unsupported predicate URI w.r.t.
Mp (or simply unsupported predicate URI). �

43

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

E.g., owlx:integerEquality is a supported predicate URI w.r.t. Mp1 presented in Ex-
ample 1, while owlx:integerInequality is an unsupported predicate URI w.r.t. Mp1. There-
fore, according to Mp1, we know neither the arity nor the extension of the predicate that
owlx:integerInequality represents. Note that we make as few as assumptions as possible
about unsupported predicates; e.g., we do not even assume that they have a fixed arity.

4.1.1 Datatype Groups

Informally speaking, a datatype group is a group of supported predicate URIs (‘wrapped’
around a set of base datatype URIs), which can potentially be divided into different sub-
groups, so that predicates in each sub-group are about the base datatype of the sub-group.
This allows us to make use of known decidability results about the satisfiability problems
of predicate conjunctions of, e.g., the admissible/computable concrete domains presented
in Section 2.4 of [49]. Formally, a datatype group is defined as follows, and the sub-groups
are defined in Definition 27.

Definition 24 (Datatype Group) A datatype group G is a tuple (Mp,DG ,dom), where
Mp is the predicate map of G , DG is the set of base datatype URI references of G , and
dom is the declared domain function of G .

We call ΦG the set of supported predicate URI references of G , i.e., for each u ∈ΦG ,
Mp(u) is defined; we require DG ⊆ ΦG . We assume that there exists a unary predicate
URI reference owlx:DatatypeBottom 6∈ΦG .

The declared domain function dom is a mapping s.t. ∀u ∈ DG : dom(u) = u, and
∀u ∈ΦG , dom(u) ∈ (DG)n, where n = a(Mp(u)). �

As we can see from the above definition, supported predicate URIs in DG are also
treated as base datatype URIs, therefore they can be used in typed literals.17 Supported
predicate URIs relate to base datatypes URIs via the declared domain function dom, which
also helps in defining the interpretation of the relativised negated predicate URIs in Defi-
nition 25.

Example 2 G1 = (Mp1,DG 1,dom1) is a datatype group, where Mp1 is defined in
Example 1, DG 1 = {xsd:string, xsd:integer}, and dom1 = {〈xsd:string,xsd:string〉,
〈xsd:integer,xsd:integer〉,〈owlx:integerEquality,(xsd:integer,xsd:integer)〉, 〈owlx: inte-
gerLargerThanx&n, xsd:integer〉}.

According to Mp1, we have ΦG 1 = {xsd:string,xsd:integer,owlx:integerEquality,
owlx:integerLargerThanx&n}. ♦

Definition 25 (Interpretation of Datatype Group) A datatype interpretation ID of a
datatype group G = (Mp,DG ,dom) is a pair (∆D, ·D), where ∆D (the datatype domain)
is a non-empty set and ·D is a datatype interpretation function, which has to satisfy the
following conditions

1. rdfs:LiteralD = ∆D;

17Typed literals are of the form “v”ˆˆu, where v is a lexical form of a data value and u is a datatype URI.

44

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

2. for each plain literal l, lD = l ∈ PL, where PL is the value space for plain literals
(i.e., the union of the set of Unicode strings and the set of pairs of Unicode strings
and language tags);

3. ∀u ∈ DG , let d = Mp(u):

(a) uD = V (d)⊆ ∆D,

(b) if v ∈ L(d), then (“v”ˆˆu)D = L2V (d)(v),

(c) if v 6∈ L(d), then (“v”ˆˆu)D is not defined;

4. for any two u1,u2 ∈ DG : uD
1 ∩uD

2 = /0;

5. PL⊆ ∆D, and ∀u ∈ DG ,uD ⊆ ∆D;

6. owlx:DatatypeBottomD = /0;

7. ∀u ∈ΦG , uD = E(Mp(u));

8. ∀u ∈ ΦG , uD ⊆ (dom(u))D, where (dom(u))D = dD
1 × ·· · × dD

n for dom(u) =
(d1, . . . ,dn) and a(Mp(u)) = n.

9. ∀u 6∈ΦG , uD ⊆
⋃

n≥1(∆D)n, and “v”ˆˆu ∈ ∆D.

Moreover, we extend ·D to (relativised) negated predicate URI references u as follows:

(u)D =







∆D \uD if u ∈ DG
(dom(u))D \uD if u ∈ΦG \DG
⋃

n≥1(∆D)n \uD if u 6∈ΦG .

�

Condition 4 requires the value spaces of the base datatype are disjoint, which is essen-
tial to dividing ΦG into sub-groups. Condition 5 states that the union of the value spaces
of plain literals and base datatypes is a proper subset of the datatype domain, because
a typed literal associated with an unsupported predicate can be interpreted as something
outside the above value spaces. Condition 6 states that owlx:DatatypeBottom is a negated
predicate URI of rdfs:Literal. Condition 7 and 8 ensure that the supported predicate URIs
are interpreted as the extensions of the predicates they represent, and are subsets of the
corresponding declared domains. Condition 9 ensures that unsupported predicate URIs
are not restricted to any fixed arity, and that typed literals with unsupported predicates are
interpreted as some member of the datatype domain.

Note that supported predicate URIs u ∈ ΦG \DG have relativised negations (to their
declared domains). E.g., owlx:integerLargerThanx&18, the negated predicate URI for
owlx:integerLargerThanx&18, is interpreted as V (integer) \ (owlx:integerLargerThan-
x&18)D; therefore, its interpretation includes the integer 5, but not the string “Fred”,
no matter if there exist any other base datatypes in DG .

Now we introduce the kind of basic reasoning mechanisms required in a datatype
group.

45

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

Definition 26 (Predicate Conjunction) Let V be a set of variables, G = (Mp,DG ,dom)
a datatype group, we consider predicate conjunctions of G of the form

C =
k∧

j=1

w j(v
(j)
1 , . . . ,v(j)

n j), (2)

where the v(j)
i are variables from V, w j are (possibly negated) predicate URI references

of the form u j or u j, and if u j ∈ΦG ,a(Mp(u j)) = n j. A predicate conjunction C is called
satisfiable iff there exists a function δ mapping the variables in C to data values in ∆D s.t.

〈δ(v(j)
1), . . . ,δ(v(j)

n j)〉 ∈ wD
j for all 1≤ j ≤ k. Such a function δ is called a solution for C .

�

E.g., C1 = owlx:integerLargerThanx&38(v1) ∧ owlx:integerLargerThanx&12(v2) ∧
owlx:integerEquality(v1,v2) is a predicate conjunction of G1 presented in Example 2 on
page 44. The function δ = {v1 7→ 26,v2 7→ 26} is a solution of C1; therefore, C1 is satisfi-
able.

The predicate conjunction over a datatype group G can possibly be divided into inde-
pendent sub-conjunctions of sub-groups of G . Informally speaking, a sub-group includes
a base datatype URI and the set of supported predicate URIs about the base datatype URI.

Definition 27 (Sub-Group) Given a datatype group G = (Mp,DG ,dom) and a base
datatype URI reference w ∈ DG , the sub-group of w in G , abbreviated as sub-group(w),
is defined as:

sub-group(w) = {u|u ∈ΦG and dom(u) = (w, . . . ,w)
︸ ︷︷ ︸

n times

}

where n = a(Mp(u)). �

Example 3 The sub-group of xsd:integer in G1 presented in Example 2 on page 44
is sub-group(xsd:integer) = {xsd:integer, owlx:integerEquality, owlx:integerLargerTh-
anx&n}. According to the above definition and condition 4 of Definition 25, the pred-
icate conjunction over sub-group(xsd:integer) and sub-group(xsd:string) can be handled
separately if there are no common variables; if there are common variables, there exist
contradictions, due to the disjointness of V (integer) and V (string). ♦

Since the datatype domain ∆D of a datatype group is not fixed, an admissible concrete
domain can no longer be a conforming datatype group (cf. Lemma 4 in [54]). However,
a sub-group of a datatype group is very close to a concrete domain; the following defini-
tion, accordingly, defines the corresponding concrete domain of a sub-group in a datatype
group.

Definition 28 (Corresponding Concrete Domain) Given a datatype group G =
(Mp,DG , dom) and a base datatype URI reference w ∈ DG , let Mp(w) = D , the cor-
responding concrete domain of sub-group(w) is (∆D ,ΦD), where ∆D := V (D) and
ΦD = {⊥D}∪{Mp(u)|u ∈ sub-group(w)}, where ⊥D corresponds to w. �

46

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

Example 4 The corresponding concrete domain of sub-group(xsd:integer) in G1 pre-
sented in Example 2 is (∆integer,Φinteger), where ∆integer := V (integer) and Φinteger =
{⊥integer, integer,=int ,>int

[n]}. Note that the predicate ⊥integer corresponds to xsd:integer,
the negated form of xsd:integer. ♦

The benefit of introducing the corresponding concrete domain for a sub-group is that
if the corresponding concrete domain is admissible, informally speaking, the sub-group
is computable.

Lemma 1 Given a datatype group G = (Mp,DG ,dom) and a base datatype URI refer-
ence w ∈ DG , if the corresponding concrete domain of w, (∆D ,ΦD), is admissible, then
the satisfiability problem for finite predicate conjunctions Cw of the sub-group(w) is de-
cidable.

Proof: Direct consequence of Definition 28 and Definition 2.8 on page 28 of [49]: (i) If
(∆D ,ΦD) is admissible, then ΦD is close under negation; hence ∀u∈ sub-group(w)\{w},
there exists u′ ∈ sub-group(w), such that uD = u′D. Therefore, predicate conjunctions over
sub-group(w) can be equivalently transformed into predicate conjunctions of (∆D ,ΦD).
(ii) Predicate conjunctions over (∆D ,ΦD) are decidable, if (∆D ,ΦD) is admissible.

Now we provide the conditions for comforming/computable datatype groups.

Definition 29 (Conforming Datatype Group) A datatype group G is conforming iff

1. for any u∈ΦG \DG with a(Mp(u)) = n≥ 2: dom(u) = (w, . . . ,w
︸ ︷︷ ︸

n times

) for some w∈DG ,

and

2. for any u ∈ΦG \DG : there exist u′ ∈ΦG \DG such that u′D = uD, and

3. the satisfiability problems for finite predicate conjunctions of each sub-group of G
is decidable, and

4. for each datatype ui ∈DG , there exists wi ∈ΦG , s.t. Mp(wi) =6=ui where 6=ui is the
binary inequality predicate for Mp(ui). �

In the above definition, condition 1 ensure that ΦG can be completely divided into sub-
groups. Condition 2 and 3 and all the sub-groups are computable. Condition 4 ensures
that number restrictions can be handled.

Example 5 G1 presented in Example 2 is not conforming, because it doesn’t sat-
isfy condition2 and 4 of the above definition. To make it conforming, we should
extend Mp1 as follows: Mp1 = {〈xsd:string,string〉, 〈owlx:stringEquality,=str〉,
〈owlx:stringInequality, 6=str〉, 〈xsd:integer, integer〉, 〈owlx:integerEquality,=int

〉, 〈owlx:integerInequality, 6=int〉, 〈owlx:integerLargerThanx&n,>int
[n]〉,

〈owlx:integerLessThanOrEqualx&n, ≤int
[n]〉}. ♦

47

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

Lemma 2 If G = (Mp,DG ,dom) is a conforming datatype group, then the satisfiability
problem for finite predicate conjunctions of G is decidable.

Proof: Let the predicate conjunction be C = Cw1 ∧ ·· · ∧ Cwk ∧ CU ,where DG =
{w1, . . . ,wk} and Cwi is the predicate conjunction for sub-group(wi) and CU the sub-
conjunction of C where only unsupported predicate appear.

According to Definition 29, Cw1 ∧ ·· ·∧Cwk is decidable. According to Definition 24,
CU is unsatisfiable iff there exist u(v1, . . . ,vn) and u(v1, . . . ,vn) for some u 6∈ ΦG appear
in CU ; otherwise, CU is satisfiable. Therefore, C is satisfiable iff both Cw1 ∧·· ·∧Cwk and
CU are satisfiable; otherwise, C is unsatisfiable.

4.1.2 Summary

When we extend OWL datatyping to predicates by datatype groups, we consider the sim-
ilarities and differences between datatypes and predicates: on the one hand, datatypes can
be seen as unary predicates; on the other hand, datatypes are characterised by their lexical
spaces, value spaces and lexical-to-value mappings, while predicates are characterised by
their arities and extensions. For datatypes, we concern more about their members, i.e.,
data values; therefore, we could use datatype URI references in typed literals. Predicates
are more suitable to represent constraints about data values than datatypes in that they can
represent not only unary but also n-ary constraints.

In a datatype group, predicates can be divided into some sub-groups, each of which
is about a base datatype of the datatype group. The motivations of grouping come from
the observation that the predicate conjunction problem of each (some) sub-group(s) is
(are) decided by a datatype reasoner. More importantly, the decidability of the predicate
conjunction problem of a datatype group depends of the decidability of the sub-problems
of all its sub-groups.

Based on the datatype group approach, we propose OWL-E [56], which is a language
extending OWL DL with datatype expression axioms, as well as the datatype group-
based class constructors to allow the use of datatype expressions in class restrictions. The
novelty of OWL-E is that it enhances OWL DL with much more datatype expressiveness
and it is still decidable.

4.2 SWRL-P: Extending SWRL with Predicates

This section presents SWRL-P, an extension of SWRL 0.5 (Semantic Web Rule Language,
cf. Section2 on page 3) with datatype predicates (or simply predicates), based on the
OWL predicate extension presented in Section 4.1 on page 43. We will compare SWRL-
P and SWRL 0.7 in Section 4.2.3.

SWRL-P extends the set of SWRL atoms to include predicate atoms (or built-in
atoms);18 both the abstract syntax and the model-theoretic semantics are extended ac-
cordingly. Predicate atoms are of the form builtin(p,v1, . . . ,vn), where p is a predicate

18We call predicates built-ins, following SWRL 0.7, which is available at http://www.daml.org/
rules/proposal/.

48

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

URI reference, and v1, . . . ,vn are either literals or variables. Predicate atoms can be used
in both the antecedent (body) and consequent (head).

4.2.1 Abstract Syntax

SWRL-P extends axioms to also allow predicate atoms, by adding the production:

atom ::= builtIn ’(’ dataPredicateID { d-object } ’)’

Example 6 We can define a business rule that one charges no shipping fees for orders
(selected items only) over 50 dollars.
Implies(

Antecedent(priceInDollars(I-variable(x1) D-variable(t1)),

SelectedItems(I-variable(x1)),

builtIn(owlx:integerGreaterThan

D-variable(t1), “50”ˆˆxsd:integer))

Consequent(shippingFeeInDollars(I-variable(x1) “0”ˆˆxsd:integer))

)
In human readable syntax, this rule can be written as

priceInDollars(?x1,?t1)∧SelectedItems(?x1)∧ owlx:integerGreaterThan(?t1,“50”ˆˆxsd:integer)
→ shippingFeeInDollars(?x1,“0”ˆˆxsd:integer)) ♦

4.2.2 Direct Model Theoretic Semantics

Given a datatype group G , We extend an OWL interpretation to a tuple of the form

Ip = {R,EC,ER,EP,L,S,LV}

where R is a set of resources, LV ⊆ R is a set of literal values (the datatype domain
of G), EC is a mapping from class descriptions to subsets of R, ER is a mapping from
property URIs to binary relations on R, EP is a mapping from supported predicate URIs
u ∈ΦG to the predicate extensions E(Mp(u)) of the predicates they represent19 and from
unsupported predicate URIs u 6∈ΦG to subsets of

⋃

n≥1(LV)n, L is a mapping from typed
literals to elements of LV, and S is a mapping from individual names to elements of
EC(owl:Thing).

Given a datatype group G and an extended abstract OWL interpretation Ip, a bind-
ing B(Ip) is an extended abstract OWL interpretation that extends Ip such that S maps
i-variables to elements of EC(owl:Thing) and L maps d-variables to elements of LV re-
spectively. An atom is satisfied by an interpretation Ip under the conditions given in the
Interpretation Conditions Table 2, where C is an OWL DL class description, P is an OWL
DL individualvalued property URI, Q is an OWL DL datavalued property URI, u is a
predicate URI, x,y are variables or OWL individual URIs, and z, z1, . . . ,zn are variables
or typed literals.

A binding B(Ip) satisfies an antecedent A iff A is empty or B(Ip) satisfies every atom
in A. A binding B(Ip) satisfies a consequent C iff C is not empty and B(Ip) satisfies every

19cf. Definition 21.

49

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

Atom Condition on Interpretation
C(x) S(x) ∈ EC(C)
P(x,y) 〈S(x),S(y)〉 ∈ ER(P)
Q(x,z) 〈S(x),L(z)〉 ∈ ER(Q)
u(z1, . . . ,zn) 〈L(z1), . . . ,L(zn)〉 ∈ EP(u)
sameAs(x,y) S(x) = S(y)
do f f eremtFrom(x,y) S(x) 6= S(y)

Table 2: Interpretation Conditions Table

atom in C. A rule is satisfied by an interpretation Ip iff for every binding B such that B(Ip)
satisfies the antecedent, B(Ip) also satisfies the consequent.

The semantic conditions relating to axioms and ontologies are unchanged. In particu-
lar, an interpretation satisfies an ontology iff it satisfies every axiom (including rules) and
fact in the ontology; an ontology is consistent iff it is satisfied by at least one interpreta-
tion; an ontology O2 is entailed by an ontology O1 iff every interpretation that satisfies
O1 also satisfies O2.

Example Consider, for example, the “shipping fee” rule from Section 4.2.1. Assuming
that priceIn Dollars and shippingFeeInDollars are datavaluedPropertyIDs, SeletedItems is
a description, and owlx:integerGreaterThan is a predicate URI, then given an interpreta-
tion I = 〈R,EC,ER,EP,L,S,LV〉, a binding B(I) extends S to map the variable ?x1 to
an element of EC(owl:Thing) and extends L to map the variable ?t1 to a data value in
LV; we will use x1 to denote the element and t1 to denote the data value. The antecedent
of the rule is satisfied by B(I) iff (x1, t1) ∈ ER(priceInDollars), x1 ∈ EC(SeletedItems)
and (t1,L2V (integer)(“50”ˆˆxsd:integer)) ∈ EP(owlx:integerGreaterThan), where
L2V (integer) is the lexical-to-value mapping of integer. The consequent of the rule is
satisfied by B(I) iff (x1,L2V (integer)(“0”ˆˆxsd:integer)) ∈ ER(shippingFeeInDo- llars).

Thus the rule is satisfied by I iff for every binding B(I)
such that (x1, t1) ∈ ER(price InDollars), x1 ∈ EC(SeletedItems) and
(t1,L2V (integer)(“50”ˆˆxsd:integer)) ∈ EP (owlx:integerGreaterThan), then it is
also the case that (x1,L2V (integer)(“0”ˆˆxsd:integer)) ∈ ER(shippingFeeInDollars), i.e.:

∀x1 ∈ EC(owl:Thing), t1 ∈ LV.
((x1, t1) ∈ ER(priceInDollars)∧ x1 ∈ EC(SeletedItems)∧
(t1,L2V (integer)(“50”ˆˆxsd:integer)) ∈ EP(owlx:integerGreaterThan))
→ (x1,L2V (integer)(“50”ˆˆxsd:integer)) ∈ ER(shippingFeeInDollars)

4.2.3 SWRL-P vs. SWRL 0.7

In this section, we briefly compare the SWRL-P and SWRL 0.7.20 SWRL-P follows the
syntax of SWRL 0.7, except that SWRL-P allows the use of unsupported predicate URI
references as dataPredicateID; in this sense, SWRL-P is closer to the OWL datatyping.

20cf. http://www.daml.org/rules/proposal/.

50

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

SWRL 0.7 is based on a naive extension of OWL datatyping. It does not distinguish
datatypes from predicates, such that it is not clear whether predicates or builtins can be
used with typed literal or not in SWRL 0.7. Furthermore, it does not consider the seman-
tics of negated predicate URIs.

51

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

5 Other Proposed Extensions

The standardisation of OWL, and its widespread adoption as the knowledge representation
language of choice, has motivated research into a wide range of extensions addressing the
needs of various different applications.

5.1 Alternative Semantics for OWL Rules

As we have seen in Section 2, although the Horn rules extension proposed in ORL/SWRL
has the advantage of simplicity and a tight integration with the existing OWL language, it
has the disadvantage that key reasoning problems are no longer decidable. This is a rather
serious disadvantage: maintaining the decidability of these problems was an important
requirement in the design of OWL, and the loss of decidability indicates that developing
effective implementations is likely to be much more problematical.

These considerations (amongst others) have led several groups to study alternative
ways of integrating rules with (the DLs underlying) OWL without losing decidability.
One obvious way to do this is to restrict (syntactically) the form of rules. A number of
different groups have studied this approach, with perhaps the best known work being by
Levy et al in the development of the CARIN system [47]. More recently, Calvanese et al
have proposed a relatively weak conceptual knowledge representation language that can
be combined with rules in such a way that logical implication for ground literals (i.e.,
individuals) is still decidable, and has relatively low complexity (i.e., polynomial in data
complexity) [16]. The main difficulty with both these approaches is that the concept lan-
guage supported is much weaker than OWL (even OWL Lite), and in the case of CARIN
the integration between rules and the concept language is also quite weak—it would not,
for example, be possible to use the rules language to capture the “uncle” property dis-
cussed in Section 2.

An alternative approach is to weaken the semantic connection between rules and the
concept language. This can be done by restricting the effect of rules to the Herbrand
universe, i.e., to individuals named in the ontology. This approach has a long history in
Description Logics, and was, for example, used in the Classic system [11]. More recently,
variations on this approach have been studied with a view to providing a decidable solu-
tion for OWL rules. Of particular interest is work by Eiter et al on the combination of
answer set programming with DLs [20]. This would provide for a decidable language,
but would have the disadvantage that rule based inferences would only affect inferences
relating to individuals (e.g., retrieval queries), and would not affect inferences relating to
classes (e.g., subsumption).

In a similar vein, an autoepstemic semantics can be applied to rules as first proposed
by Donini et al [19], and more recently investigated in the context of OWL by Franconi
et al [23]. In this approach is used to limit the effects of rules to inferences relating
to individuals. The decidability of key reasoning tasks in the resulting language can be
demonstrated, but their precise complexity bounds are still unknown.

52

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

5.2 A Fuzzy Extension to OWL

In some applications it is important to be able to deal with uncertain, imprecise and/or
vague knowledge. This requirement has led to a recent investigation by Kollias et al
of a “fuzzy” extension to both OWL and SWRL [77]. This approach is based on the
“fuzzification” of the interpretation, and does not change the syntax of the concept and
role constructors.

This is not the first time that fuzzy extensions to description logics have been studied.
Earlier work by Yen [79] and by Tresp and Molitor [75] also suggested leaving the basic
DL syntax unchanged, although Tresp and Molitor proposed an extension to allow a fuzzy
membership value to be applied to concepts.

5.3 A Context Extension to OWL

Some researchers have argued that OWL needs to be extended to better meet the require-
ments arising from the integrating multiple heterogeneous ontologies [13]. In particular,
it is argued that interpreting all ontologies in the same domain is unsuited to such an
integration scenario.

The proposed solution is to allow for multiple interpretation domains, with ontologies
in different domains being linked by bridging rules. These bridging rules effectively
establish subsumption relationships between classes in different interpretation domains.
Note that this approach is rather similar in many respects to the work by Walter et al on
E-connections [45].

It is claimed that the approach can be adapted not only to OWL but also to SWRL and
to other extensions of OWL (such as the fuzzy extension mentioned above).

53

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

6 Conclusion

As we have seen, the importance of ontologies in the Semantic Web has prompted the de-
velopment of several proposed extensions to the OWL ontology language. These include
extensions for rules, fuzzy concepts, datatypes and multiple contexts.

In this report we have described in detail three of the more prominent and well devel-
oped proposals. It is likely that the ORL/SWRL proposal will lead to the establishment of
a new W3C standardisation working group with a view to developing a new standard for
Semantic Web rules. The approach using complex role inclusion axioms, while attractive
in some respects (i.e., the retention of decidability) does not seem so likely to be adopted
as it does not offer the same increase in expressive power, and it seems to be already
widely accepted that future extensions to OWL will no longer be decidable. It seems
likely that the proposal to extend OWL with more expressive datatypes will be merged
into the SWRL proposal, and more recent versions of this proposal include a wide range
of built in datatype predicates (see [37]).

Other extensions to OWL and its underlying DL, such as those described in Section 5,
are generally less well developed, and seem much less likely to find their way into lan-
guage standardisation proposals in the short term. Some of this work is, however, very
promising and might soon begin to have an impact on the development of languages for
the Semantic Web.

54

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

References

[1] Franz Baader. Terminological cycles in KL-ONE-based knowledge representation
languages. In Proc. of the 8th Nat. Conf. on Artificial Intelligence (AAAI’90), pages
621–626, Boston (Ma, USA), 1990.

[2] Franz Baader, Hans-Jürgen Bürckert, Bernhard Nebel, Werner Nutt, and Gert
Smolka. On the expressivity of feature logics with negation, functional uncertainty,
and sort equations. J. of Logic, Language and Information, 2:1–18, 1993.

[3] Franz Baader and Ulrike Sattler. Number restrictions on complex roles in description
logics: A preliminary report. In Proc. of the 5th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR’96), pages 328–338, 1996.

[4] M. Baldoni. Normal Multimodal Logics: Automatic Deduction and Logic Program-
ming Extension. PhD thesis, Dipartimento di Informatica, Università degli Studi di
Torino, Italy, 1998.

[5] M. Baldoni, L. Giordano, and A. Martelli. A tableau calculus for multimodal log-
ics and some (un)decidability results. volume 1397 of Lecture Notes in Artificial
Intelligence. Springer, 1998.

[6] Dave Beckett. Rdf/xml syntax specification (revised). W3C Recommendation, 10
February 2004. Available at http://www.w3.org/TR/rdf-syntax-grammar/.

[7] R. Berger. The undecidability of the dominoe problem. Mem. Amer. Math. Soc.,
66:1–72, 1966.

[8] R. Berger. The undecidability of the dominoe problem. 66, 1966.

[9] Tim Berners-Lee. Semantic web roadmap, 1998. Available at http://www.w3.
org/DesignIssues/Semantic.

[10] Paul V. Biron and Ashok Malhotra. XML schema part 2: Datatypes. W3C Recom-
mendation, May 2001. Available at http://www.w3.org/TR/xmlschema-2/.

[11] Alexander Borgida, Ronald J. Brachman, Deborah L. McGuinness, and Lori Alperin
Resnick. CLASSIC: A structural data model for objects. In Proc. of the ACM
SIGMOD Int. Conf. on Management of Data, pages 59–67, 1989.

[12] Alexander Borgida and Peter F. Patel-Schneider. A semantics and complete algo-
rithm for subsumption in the CLASSIC description logic. J. of Artificial Intelligence
Research, 1:277–308, 1994.

[13] Paolo Bouquet, Fausto Giunchiglia, Frank van Harmelen, Luciano Serafini, and
Heiner Stuckenschmidt. C-OWL: Contextualizing ontologies. In Proc. of the 2003
International Semantic Web Conference (ISWC 2003), pages 164–179. Springer,
2003.

55

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

[14] R. J. Brachman and J. Schmolze. An overview of the KL-ONE knowledge repre-
sentation system. Cognitive Science, 9(2):171–216, 1985.

[15] T. Bray, J. Paoli, C. Sperberg-McQueen, and E. Maler. Extensible markup language
(XML) 1.0 (second edition). W3C recommendation., October 2000. Available at
http://www.w3.org/TR/1998/REC-xml.

[16] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. What to ask to a peer: Ontolgoy-based query reformulation. In
Proc. of the 9th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR 2004), pages 469–478. Morgan Kaufmann, Los Altos, 2004.

[17] G. De Giacomo and M. Lenzerini. Boosting the correspondence between description
logics and propositional dynamic logics (extended abstract). In Proc. of the 12th Nat.
Conf. on Artificial Intelligence (AAAI’94). AAAI Press, 1994.

[18] S. Demri. The complexity of regularity in grammar logics and related modal logics.
J. of Logic and Computation, 11(6), 2001.

[19] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, Werner Nutt, and Andrea
Schaerf. Adding epistemic operators to concept languages. In Proc. of the 3rd Int.
Conf. on the Principles of Knowledge Representation and Reasoning (KR’92), pages
342–353. Morgan Kaufmann, Los Altos, 1992.

[20] Thomas Eiter, Thomas Lukasiewicz, Roman Schindlauer, and Hans Tompits. Com-
bining answer set programming with description logics for the semantic web. In
Proc. of the 9th Int. Conf. on Principles of Knowledge Representation and Reason-
ing (KR 2004), pages 141–151. Morgan Kaufmann, Los Altos, 2004.

[21] L. Farinãs del Cerro and M. Penttonen. Grammar logics. Logique et Analyse, 121-
122:123–134, 1988.

[22] D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness, and P. F. Patel-Schneider.
OIL: An ontology infrastructure for the semantic web. IEEE Intelligent Systems,
16(2):38–45, 2001.

[23] Enrico Franconi, Gabriel M. Kuper, Andrei Lopatenko, and Luciano Serafini. A
robust logical and computational characterisation of peer-to-peer database systems.
In International VLDB Workshop on Databases, Information Systems and Peer-to-
Peer Computing (DBISP2P’03), pages 64–76, 2003.

[24] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Descrip-
tion logic programs: Combining logic programs with description logic. In Proc. of
the Twelfth International World Wide Web Conference (WWW 2003), pages 48–57.
ACM, 2003.

[25] V. Haarslev and R. Möller. RACER system description. In Proc. of the Int. Joint
Conf. on Automated Reasoning (IJCAR 2001), volume 2083 of Lecture Notes in
Artificial Intelligence. Springer, 2001.

56

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

[26] Patrick Hayes. RDF model theory. W3C Recommendation, 10 February 2004.
Available at http://www.w3.org/TR/rdf-mt/.

[27] Laura Hollink, Guus Schreiber, Jan Wielemaker, and Bob Wielinga. Semantic anno-
tation of image collections. In Workshop on Knowledge Markup and Semantic An-
notation, KCAP’03, 2003. Available at http://www.cs.vu.nl/˜guus/papers/
Hollink03c.pdf.

[28] J. E. Hopcroft and J. D. Ullman. Introduction to automata theory, languages, and
computation. Addison Wesley Publ. Co., Reading, Massachussetts, 1997.

[29] Masahiro Hori, Jérôme Euzenat, and Peter F. Patel-Schneider. OWL web ontology
language XML presentation syntax. W3C Note, 11 June 2003. Available at http:
//www.w3.org/TR/owl-xmlsyntax/.

[30] I. Horrocks. Using an Expressive Description Logic: FaCT or Fiction? In Proc.
of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR’98). Morgan Kaufmann, Los Altos, 1998.

[31] I. Horrocks and U. Sattler. Decidability of SH I Q with complex role inclusion
axioms. Technical Report LTCS-Report 02-06, TU-Dresden, Germany, 2002.

[32] I. Horrocks and U. Sattler. Optimised reasoning for SH I Q . In Proc. of the 15th
Eur. Conf. on Artificial Intelligence (ECAI 2002), 2002.

[33] I. Horrocks and U. Sattler. Decidability of SH I Q with complex role inclusion
axioms. In Proc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003).
Morgan Kaufmann, Los Altos, 2003. A long version is available as technical report
LTCS 02-06 at http://lat.inf.tu-dresden.de/research/reports.html.

[34] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description
logics. In H. Ganzinger, D. McAllester, and A. Voronkov, editors, Proc. of the 6th
Int. Conf. on Logic for Programming and Automated Reasoning (LPAR’99), volume
1705 of Lecture Notes in Artificial Intelligence, pages 161–180. Springer, 1999.

[35] Ian Horrocks and Peter F. Patel-Schneider. Reducing OWL entailment to description
logic satisfiability. In Dieter Fensel, Katia Sycara, and John Mylopoulos, editors,
Proc. of the 2003 International Semantic Web Conference (ISWC 2003), number
2870 in Lecture Notes in Computer Science, pages 17–29. Springer, 2003.

[36] Ian Horrocks and Peter F. Patel-Schneider. A proposal for an owl rules language.
In Proc. of the Thirteenth International World Wide Web Conference (WWW 2004),
pages 723–731. ACM, 2004.

[37] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof,
and Mike Dean. SWRL: A semantic web rule language combining owl and ruleml.
W3C Note, 21 May 2004. Available at http://www.w3.org/Submission/SWRL/.

57

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

[38] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. Reviewing the
design of DAML+OIL: An ontology language for the semantic web. In Proc. of the
18th Nat. Conf. on Artificial Intelligence (AAAI 2002), pages 792–797. AAAI Press,
2002.

[39] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ and
RDF to OWL: The making of a web ontology language. Journal of Web Semantics,
1(1):7–26, 2003.

[40] Ian Horrocks and Ulrike Sattler. The effect of adding complex role inclusion axioms
in description logics. In Proc. of the 18th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2003), pages 343–348. Morgan Kaufmann, Los Altos, 2003.

[41] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for expressive
description logics. In Harald Ganzinger, David McAllester, and Andrei Voronkov,
editors, Proc. of the 6th Int. Conf. on Logic for Programming and Automated Rea-
soning (LPAR’99), number 1705 in Lecture Notes in Artificial Intelligence, pages
161–180. Springer, 1999.

[42] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for very ex-
pressive description logics. J. of the Interest Group in Pure and Applied Logic,
8(3):239–264, 2000.

[43] Graham Klyne and Jeremy J. Carroll. Resource description framework (RDF): Con-
cepts and abstract syntax. W3C Recommendation, 10 February 2004. Available at
http://www.w3.org/TR/rdf-concepts/.

[44] O. Kupferman, U. Sattler, and M. Y. Vardi. The complexity of the graded mu-
calculus. In Proc. of the 19th Int. Conf. on Automated Deduction (CADE 2002),
volume 2392 of Lecture Notes in Artificial Intelligence. Springer, 2002.

[45] Oliver Kutz, Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. E-
connections of abstract description systems. Artificial Intelligence, 151(1):1–73,
2004.

[46] D. B. Lenat and R. V. Guha. Building Large Knowledge-Based Systems. Addison-
Wesley, 1989.

[47] Alon Y. Levy and Marie-Christine Rousset. Combining Horn rules and description
logics in CARIN. Artificial Intelligence, 104(1–2):165–209, 1998.

[48] John W. Lloyd. Foundations of logic programming (second, extended edition).
Springer series in symbolic computation. Springer-Verlag, New York, 1987.

[49] Carsten Lutz. Interval-based temporal reasoning with general TBoxes. In Proc. of
the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001), pages 89–94, 2001.

[50] Drew V. McDermott and Dejing Dou. Representing disjunction and quantifiers in
rdf. In Proc. of the 2002 International Semantic Web Conference (ISWC 2002),
volume 2342 of Lecture Notes in Computer Science, pages 250–263. Springer, 2002.

58

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

[51] Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. A Rational Design for a
Weighted Finite-State Transducer Library. Number 1436 in LNCS. Springer, 1998.

[52] Lin Padgham and Patrick Lambrix. A framework for part-of hierarchies in termino-
logical logics. In Proc. of the 4th Int. Conf. on the Principles of Knowledge Repre-
sentation and Reasoning (KR’94), pages 485–496, 1994.

[53] Jeff Pan and Ian Horrocks. Web ontology reasoning with datatype groups. In Dieter
Fensel, Katia Sycara, and John Mylopoulos, editors, Proc. of the 2003 International
Semantic Web Conference (ISWC 2003), number 2870 in Lecture Notes in Computer
Science, pages 47–63. Springer, 2003.

[54] Jeff Pan and Ian Horrocks. Web ontology reasoning with datatype groups. In Dieter
Fensel, Katia Sycara, and John Mylopoulos, editors, Proc. of the 2003 International
Semantic Web Conference (ISWC 2003), number 2870 in Lecture Notes in Computer
Science, pages 47–63. Springer, 2003.

[55] Jeff Z. Pan and Ian Horrocks. Extending Datatype Support in Web Ontology Reason-
ing. In Proc. of the 2002 Int. Conference on Ontologies, Databases and Applications
of SEmantics (ODBASE 2002), number 2519 in Lecture Notes in Computer Science,
pages 1067–1081. Springer, 2002.

[56] Jeff Z. Pan and Ian Horrocks. Owl-e: Extending owl dl with datatype expressions.
Technical report, Information Management Group, Computer Science Department,
The University of Manchester, April 2004.

[57] P. F. Patel-Schneider and I. Horrocks. DLP and FaCT. volume 1397 of Lecture
Notes in Artificial Intelligence, pages 19–23. Springer, 1999.

[58] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL web ontology
language semantics and abstract syntax. W3C Recommendation, 10 February 2004.
Available at http://www.w3.org/TR/owl-semantics/.

[59] Peter F. Patel-Schneider, Deborah L. McGuiness, Ronald J. Brachman, Lori Alperin
Resnick, and Alexander Borgida. The CLASSIC knowledge representation system:
Guiding principles and implementation rational. SIGART Bull., 2(3):108–113, 1991.

[60] A. Rector. Analysis of propagation along transitive roles: Formalisation of the galen
experience with medical ontologies. CEUR (http://ceur-ws.org/), 2002.

[61] A. Rector, S. Bechhofer, C. A. Goble, I. Horrocks, W. A. Nowlan, and W. D.
Solomon. The GRAIL concept modelling language for medical terminology. Ar-
tificial Intelligence in Medicine, 9:139–171, 1997.

[62] A. Rector and I. Horrocks. Experience building a large, re-usable medical ontology
using a description logic with transitivity and concept inclusions. In Proceedings
of the Workshop on Ontological Engineering, AAAI Spring Symposium (AAAI’97).
AAAI Press, Menlo Park, California, 1997.

59

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

[63] Alan Rector. Analysis of propagation along transitive roles: Formalisation of the
galen experience with medical ontologies. In Proc. of DL 2002. CEUR (http:
//ceur-ws.org/), 2002.

[64] A. Riazanov and A. Voronkov. The Design and Implementation of Vampire. AI
Communications, 15(2-3):91–110, 2002.

[65] U. Sattler. Description logics for the representation of aggregated objects. In
W. Horn, editor, Proc. of the 14th Eur. Conf. on Artificial Intelligence (ECAI 2000).
IOS Press, Amsterdam, 2000.

[66] Ulrike Sattler. Description logics for the representation of aggregated objects. In
Proc. of the 14th Eur. Conf. on Artificial Intelligence (ECAI 2000), 2000.

[67] Klaus Schild. A correspondence theory for terminological logics: Preliminary re-
port. In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91), pages
466–471, 1991.

[68] M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with comple-
ments. Acta Informatica, 48(1):1–26, 1991.

[69] Manfred Schmidt-Schauß. Subsumption in KL-ONE is undecidable. In Ron J.
Brachman, Hector J. Levesque, and Ray Reiter, editors, Proc. of the 1st Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR’89), pages 421–
431. Morgan Kaufmann, Los Altos, 1989.

[70] S. Schulz and U. Hahn. Parts, locations, and holes - formal reasoning about anatom-
ical structures. In Proc. of AIME 2001, volume 2101 of Lecture Notes in Artificial
Intelligence. Springer, 2001.

[71] Michael K. Smith, Chris Welty, and Deborah L. McGuinness. OWL web ontology
language guide. W3C Recommendation, 10 February 2004. Available at http:
//www.w3.org/TR/owl-guide/.

[72] K. Spackman. Managing clinical terminology hierarchies using algorithmic calcu-
lation of subsumption: Experience with snomed-rt. J. of the Amer. Med. Informatics
Ass., 2000. Fall Symposium Special Issue.

[73] The DAML Services Coalition. Daml-s: Semantic markup for web services, May
2003. Available at http://www.daml.org/services/daml-s/0.9/daml-s.
html.

[74] S. Tobies. PSPACE reasoning for graded modal logics. J. of Logic and Computation,
11(1):85–106, 2001.

[75] Christopher B. Tresp and Ralf Molitor. A description logic for vague knowledge.
In Proc. of the 13th Eur. Conf. on Artificial Intelligence (ECAI’98), pages 361–365,
1998.

60

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

[76] Dmitry Tsarkov and Ian Horrocks. DL reasoner vs. first-order prover. In Proc.
of the 2003 Description Logic Workshop (DL 2003), volume 81 of CEUR (http:
//ceur-ws.org/), pages 152–159, 2003.

[77] V. Tzouvaras, G. Stamou, and S. Kollias. Knowledge refinement using fuzzy compo-
sitional neural networks. In International Conference on Artificial Neural Networks
(ICANN’03), 2003.

[78] M. Wessel. Obstacles on the way to qualitative spatial reasoning with description
logics: Some undecidability results. CEUR (http://ceur-ws.org/), 2001.

[79] John Yen. Generalizing term subsumption languages to fuzzy logic. In Proc. of the
12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91), pages 472–477, 1991.

61

