
KAON SERVER Architecture

Boris Motik2, Daniel Oberle1, Ste�en Staab1, Rudi Studer1;2, Raphael Volz1;2

1University of Karlsruhe

Institute AIFB

D-76128 Karlsruhe

email: flastnameg@aifb.uni-karlsruhe.de

2FZI - Research Center for Information Technologies

Haid-und-Neu-Strasse 10-14

D-76131 Karlsruhe

email: flastnameg@fzi.de

Technical Report No. 421

Identi�er Del 5

Class Deliverable

Version 2.0

Date 09-05-2002

Status Final

Distribution Internal

Lead Partner AIFB

IST Project 2001-33052 WonderWeb: Ontology Infrastructure for the Semantic Web i

WonderWeb Project

This document forms part of a research project funded by the IST Programme of the

Commission of the European Communities as project number IST-2001-33052.

For further information about WonderWeb, please contact the project coordinator:

Ian Horrocks

The Victoria University of Manchester

Department of Computer Science

Kilburn Building

Oxford Road

Manchester M13 9PL

Tel: +44 161 275 6154

Fax: +44 161 275 6236

Email: wonderweb-info@lists.man.ac.uk

IST Project 2001-33052 WonderWeb: Ontology Infrastructure for the Semantic Web ii

Executive Summary

This deliverable describes the architecture of KAON SERVER, which realizes

the core technical infrastructure for the WonderWeb project. The development

is carried out within workpackage 2. Since KAON SERVER is the infrastruc-

ture kernel of the project, its architecture must support and is inuenced by the

activities described in the other work packages. Developing KAON SERVER

comprises means for component management making the architecture dynami-

cally extensible, an API allowing transparent access to ontologies and �nally a

multi-user capable transactional system for storage of ontologies and instances.

Besides, it is tightly connected to several external services, e.g. inference en-

gines, to o�er additional functionality to clients. The challenge of this task is

the provision of capable, but open interfaces that allow the welding together of

ontology-aware components that already exist, are to be developed in Wonder-

Web, or provided by the wider World Wide Web community. For this purpose,

we exploit current state-of-the-art. If such technologies exhibit severe limits

hindering the envisioned objectives, new solutions are sought and implemented.

The architecture presented in this deliverable has to be viewed as an initial

design which will be evaluated and incrementally improved. The latest ver-

sions can be accessed via the Karlsruhe Semantic Web and Ontology Tool Suite

(KAON) website http://kaon.semanticweb.org.

Contents

1 Introduction 2

2 Framework 4

2.1 Requirements . 6

2.2 KAON Architecture . 9

2.3 KAON SERVER . 12

3 Architecture 13

3.1 Core functionalities . 13

3.2 Extended Functionalities . 14

3.3 Functional layers . 14

3.4 Functional components . 16

3.5 Technical Architecture . 18

3.5.1 Component Management 18

3.5.2 Data Access and Data Persistence 18

4 Component Management 22

4.1 Goals . 22

4.2 Requirements . 23

4.3 Objectives . 23

4.4 Design . 24

4.4.1 Technology Selection . 24

4.4.2 Interceptors . 26

iii

CONTENTS 1

4.5 Abstract usage scenarios . 27

4.6 Additional bene�ts . 29

5 Data Access 30

5.1 Goals . 30

5.2 Requirements . 31

5.3 Objectives . 31

5.4 Design . 32

5.4.1 Technology selection . 32

5.4.2 RDF API . 32

5.4.3 Ontology and Knowledge Base API 34

5.4.4 Implementations . 40

5.5 Additional bene�ts . 42

6 Data Persistence 43

6.1 Goals . 43

6.2 Requirements . 43

6.3 Objectives . 44

6.4 Design . 44

6.4.1 Technology Selection . 45

6.4.2 Persistence strategies . 49

6.4.3 Storage Structures . 52

7 Conclusion 57

A Glossary 58

Chapter 1

Introduction

The main organizational unit and infrastructure kernel of workpackage 2 is

represented by KAON SERVER. It provides functionality for managing com-

ponents allowing the dynamic extension of the server by new functionalities

and o�ers access to ontologies and data. Besides, KAON SERVER delivers a

comprehensive solution for the storing of ontologies and data. Existing clients

have to be connected and adapted, new clients have to be developed that hook

up to KAON SERVER to provide a range of components including support

for ontology development and maintenance, migration, sharing and integration.

In general, the aim of WP2 is the development of the technical infrastructure

and tool support that are required for real world applications in the Semantic

Web. The tools and components developed in this workpackage will also of-

fer support to the activities described in the other workpackages. The design

takes into account language development e�orts (WP1), ontological engineering

methodologies (WP4), experiences gained when connecting clients (WP2), and

input from members of the industrial advisory board (WP5). Several Semantic

Web related projects also pose requirements on a Semantic Web infrastructure

that are taken into account as far as possible. Among those are the Euro-

pean Union funded projects OntoWeb, Onto-Logging, Semantic Web Enabled

Web Services and SWAP. A detailed list of requirements and projects is given

2

CHAPTER 1. INTRODUCTION 3

in section 2.1. KAON SERVER is made up of several modules which can be

dynamically connected. Its core is the component management1 allowing allo-

cation and dynamic loading of components (cf. chapter 4). Besides, there is a

module that o�ers access to ontologies and data (cf. chapter 5) as well as an

optional module providing data persistence (cf. chapter 6). Our basic method-

ology for the development is to rely on available state-of-the-art solutions - as

far as possible - in order to provide a comprehensive architecture with features

that could not possibly be built within WonderWeb itself and in order to have

early versions of the KAON SERVER early in the project. For instance, an

implementation of Java Management Extensions (JMX) is used for Component

Management within KAON SERVER (cf. chapter 4). Only if the usage of such

technologies exhibits severe limits hindering the envisioned goals, we will take

on development by ourselves. This has been done for the Ontology API (cf.

chapter 5) and the transactional RDF Server (cf. chapter 6). Even then, we

try to reduce development e�orts by reusing existing technologies. For instance,

we exploit a relational DBMS for the aforementioned RDF Server. The archi-

tecture presented in this deliverable has to be seen as initial design which is

evaluated and incrementally improved. The KAON SERVER will become part

of the open-source Karlsruhe Semantic Web and Ontology Toolsuite (KAON)

described in chapter 2. This report takes the following structure: Chapter 2

briey describes our comprehensive KAON Framework [2] which can be seen as

the technical environment in which the architecture lives. We give a survey on

the conceptual functionality and technical architecture of KAON SERVER in

chapter 3. Its core modules, i.e. component management, data access and data

persistence, are highlighted in chapters 4, 5 and 6 respectively.

1Instead of component management one could also speak of service management. We

decided in favor of the �rst, because "service" is awkwardly overloaded.

Chapter 2

Framework

This chapter gives a brief introduction to the Karlsruhe Ontology and

Semantic Web Tool Suite (KAON). KAON provides the structural

environment for the development of KAON SERVER and contributes

several components to the development of KAON SERVER. We will

present those parts of its architecture that are concerned with this

deliverable.

The KAON Ontology and Semantic Web Tool Suite builds on experiences

from previous developments and projects dealing with semantics-based applica-

tions in the areas of E-Commerce, Knowledge Management and Web Portals.

From these experiences, we have collected requirements that we now ful�ll for

the construction of a Semantic Web infrastructure.

Section 2.1 provides a detailed list of requirements for KAON and section

2.2 gives a brief survey of the KAON architecture.

The KAON SERVER components are developed in context of the KAON

Ontology and Semantic Web tool suite [2]. KAON is an open-source project and

joint e�ort by both the Institute AIFB1 and the Research Center for Information

Technologies (FZI)2.

1AIFB, www.aifb.uni-karlsruhe.de
2FZI, http://www.fzi.de

4

CHAPTER 2. FRAMEWORK 5

The development of KAON is carried out in and sponsored by several Euro-

pean Union projects:

WonderWeb

Ontology Infrastructure for the Semantic Web

SWAP

Semantic Web and Peer-to-Peer

OntoWeb

Ontology-based information exchange for knowledge management and

electronic commerce

CHAPTER 2. FRAMEWORK 6

OntoLogging

Corporate Ontology Modelling and Management System

SWWS

Semantic Web Enabled Web Services

2.1 Requirements

An extensive requirement gathering process was undertaken to identify what

must be met by the KAON Framework [2]. For KAON SERVER, there are

further requirements stemming from other workpackages (language development

e�orts WP1, ontological engineering methodologies WP4, connection of clients

WP2, and input from members of the industrial advisory board WP5) as well

as from the other projects. All this led to following list of requirements:

Accessability

A framework should enable loose coupling, allowing access through standard

web protocols, as well as close coupling by embedding it into other applications.

This should be done by o�ering sophisticated standard APIs.

Consistency

Consistency of information is a critical requirement of any enterprise system.

Each update of a consistent ontology must result in an ontology that is also

consistent. In order to achieve that goal, precise rules must be de�ned for

ontology evolution and components updating ontologies must implement and

adhere to these rules. Also, all updates to the ontology must be done within

CHAPTER 2. FRAMEWORK 7

transactions assuring the common properties of atomicity, consistency, isolation

and durability (ACID).

Concurrency

It must be possible to concurrently access and modify information. This may

be achieved using transactional processing, where objects can be modi�ed at

most by one transaction at the time.

Durability

Durability is an almost trivial requirement easily accomplished by reusing ex-

isting database technology. A sophisticated storage system must o�er facilities

for replication: for often used ontologies redundant copies must be maintained

to address scalability and availability problems.

Security

Guaranteeing information security means protecting information against unau-

thorized disclosure, transfer, modi�cation, or destruction, whether accidental or

intentional. To realize it, any operation should only be accessible by properly

authorized agents. Proper identity of the agent must be reliably established,

by employing authentication techniques. Con�dential data must be encrypted

for network communication and persistent storage. Finally, means for monitor-

ing (logging) of con�dential operations should be present. Those logs may be

used further for the evolution of data sets that adhere to former versions of an

ontology[20].

Reasoning

Reasoning engines are central components of semantics-based applications and

can be used for several tasks like semantic validation and deduction of otherwise

implicit information. KAON tools must have access to such engines, which can

provide the reasoning services required to ful�ll certain tasks.

CHAPTER 2. FRAMEWORK 8

Mapping

Often, there is a need for handling multiple ontologies. Complete support for

handling multiple ontologies shall be given. This includes means for mapping

and mediating between heterogeneous ontologies.

Distribution

We assume that data in the Semantic Web will be distributed. Therefore ca-

pabilities for accessing and aggregation of distributed information is required.

Means for detecting and working with duplicate data sets are required. For ex-

ample the same data accesible through with di�erent reasoning services, which

may provide distinct and unique services for that data. KAON should provide

means to detect that the same data set is used. Also means for querying and

composition of distributed data should be provided.

Localization

Since we assume that data in the Semantic Web will be distributed and the Web

is a large and unsupervised information space, means for ontology-focused and

intelligent localization of RDF and ontology-based data are required. Based

on a semantic description of the search target, the system should be able to

discover novel relevant information on the Web.

Internationalization

The framework should allow users to create ontologies and their instances in

di�erent languages and should support non-Latin character sets.

Formal semantics

The formal semantics speci�ed by an ontology must be unambiguous and clear.

CHAPTER 2. FRAMEWORK 9

Web Application Framework

Ontology and

Metadata

Engineering

DB Reverse Engineering

OntoMat App Framework

Focused

Crawler

KAON-API

KAON Portal

Mapping

ImplKAON-RDF-Impl

Web Service Connector (SOAP) Application Connector

Component

Management

Inference Services

Versioning

Services

File Services

OILEd

OntoEdit

Existing Clients

Ontobroker

Other Impl

FaCT TRIPLE

Database Service

KAON SERVER

Client Applications

Middleware

External Services

In-memory XML/RDF

Files

KAON

RDF

SERVER

External

DB

SERVER

RDF-API Other

Stanford Impl

Annotizer

Figure 2.1: KAON Architecture

2.2 KAON Architecture

KAON builds on RDF [9] and provides specialized tools for the engineering,

discovery, management, and presentation of ontologies and metadata. It is

currently growing to a family of tools [2]. As Figure 2.1 depicts, three layers are

distinguished, namely the client layer, the middleware layer and the external

services layer.

Client Applications

Two separate lines of client applications are distinguished:

� OntoMat - desktop application framework

� KAON PORTAL - Web Portal framework [1]

Both application clients may either connect or embed components residing in

the middleware layer. This may be the KAON API component, which provides

CHAPTER 2. FRAMEWORK 10

programmatic access to KAON ontologies and knowledge bases or the RDF API

to access RDF data sets.

Application clients typically provide views and controllers for models realized

by the KAON API.

Middleware Layer

The primary role of the middleware layer is to provide an abstraction for on-

tology and data access. It also allows for composition of components with

functionality provided by external services. The latter is provided by the com-

ponent management module which must support the dynamic instantiation and

localization of appropriate functional components and delegate requests to such

functional components. Functionalities may be provided by external services,

thus it must be possible to delegate requests to those services. The interested

reader may refer to chapter 4 for more details.

Data access is realized by two programmatic APIs:

� KAON API - o�ering access to ontologies and knowledge bases

� RDF API - o�ering access to RDF data

The KAON API provides programmatic access to ontologies and instances

independent of the physical storage mechanism. It supports the aforementioned

requirements by ensuring ontology consistency, adhering to the formal semantics

and supporting composition of distributed data by means of modularization.

Concurrent ontology access and transactional processing may be ensured by

particular implementations.

Since the quality of performance depends on the speci�c application, the

ontology API shields users from particular storage mechanisms. It supports

operating on RDF �les and on proprietary relational databases, which are used

to make ontological persistent.

The RDF API provides programmatic access to RDF models. It features

proprietary means for modularization, fast and eÆcient RDF parser and serial-

izer as well as transactional access.

CHAPTER 2. FRAMEWORK 11

Data access is described in further detail in chapter 5.

External Services Layer

This layer has several roles. First it o�ers access to physical data stores such as

databases, �le systems or the network. Second it groups separate, external soft-

ware entities such as reasoning engines. These services may not be managable

by the middleware, unless proprietary management functionality is provided for

individual external services.

For the demands of the WonderWeb project, this layer comprises versioning

and inference components. The usage of several existing inference engines, like

the description logics based FaCT [5], Ontobroker [19] or Triple [13], is possible

and must be supported.

KAON itself provides two external services, namely an RDF SERVER, which

is able to store RDF data and allows concurrent, transactional access to RDF

data, and an ENGINEERING SERVER, which is able to store KAON ontologies

and allows performant concurrent and transactional access to KAON ontologies.

The latter uses an optimized database schema to increase performance in set-

tings where an abstraction from RDF can be made, e.g. in ontology engineering

scenarios.

Both services are intended to handle database content and may be used

transparently through the KAON and RDF API. Non-RDF data sources may

be accessed using other implementations of the KAON API, for example creating

an ontology-compatible view of relational data, such as intended in OntoLift (cf.

WonderWeb Deliverable 11 and 30).

Future versions of the KAON Tool Suite may provide further components.

Additionally, mechanisms like views on ontologies, and an ontology query lan-

guage are envisioned research prototypes developed by KAON participants.

CHAPTER 2. FRAMEWORK 12

2.3 KAON SERVER

In order to integrate already existing clients like OILEd [18] or OntoEdit [21],

which were not developed within the KAON framework, further components

will have to be provided. These components must adopt the KAON SERVER

APIs towards their prede�ned structures.

From a client perspective, a KAON SERVER (or "OntoServer" as it was

called in the WonderWeb project proposal) may be composed of di�erent com-

ponents provided by the KAON middleware layer and by third party external

services. This composition is done using a dedicated component management

module which registers and manages all functional components intended for a

particular server instance.

There will be several KAON SERVER con�gurations, which are capable of

providing di�erent functionality depending on the selection of hosted compo-

nents.

We decided to realize KAON SERVER in such a modular way to maximize

the dissemination and use of individual functional components and to be able

to bene�t from external developments.

Chapter 3

Architecture

As described in chapter 2, a particular KAON SERVER con�guration

may be composed of central components of the KAON Framework. In

the following we try to abstract from those individual components and

take a functional approach for describing the architecture. First, in-

tended functionalities are distinguished into �ve core layers, then in-

dividual components are classi�ed into those layers. Later we sketch

several simple usage scenarios and introduce the fundamental archi-

tectural pattern for the design.

3.1 Core functionalities

We can distinguish three core modules, which should be provided by every

KAON SERVER con�guration.

The �rst module provides the functionality for managing other components

to allow the dynamic extension of the server by new functionalities. The second

module has to o�er access to data, e.g. the KAON API or RDF API. The

third module has to provide data persistence, e.g. KAON RDF SERVER or

ENGINEERING SERVER. These three core modules are discussed in detail in

chapters 4 to 6, respectively.

13

CHAPTER 3. ARCHITECTURE 14

3.2 Extended Functionalities

Besides, KAON SERVER should be extensible with further components, that

provide more functionalities. Such as external services that facilitate the access

to inference engines like FaCT [5] or Triple [13], other RDF databases such as

Sesame [7] or arbitrary databases (cf. [8] and Wonderweb Deliverable 11 and

30: OntoLift) and many more.

It is important to notice, that extended functionality cannot be distinguished

from core functionality from a client point of view. From the client perspective,

a KAON SERVER o�ers all functionalities.

External Services

Figure 3.1: KAON SERVER Layers

3.3 Functional layers

We follow the well-known principle of layering functionalities such as known

from the TCP/IP stack or from database architectures. The functional layers

are depicted in Figure 3.1. Client requests are processed in a top down manner,

�rst a request is made using some connector, then the properness of the request is

checked by some security module. The request is encapsulated into a transaction

CHAPTER 3. ARCHITECTURE 15

before being executed by delegation to the appropriate component, that is able

to compute the request. Most of the time this will involve access to data.

Eventually this is done by delegation of the request to a external service.

Connector Layer

Two APIs are provided to connect to a KAON SERVER: First, a Java API

o�ers access to the hosted functionality. This API can be used to embed the

KAON SERVER into a client application. Then, no remote calls are made to

the KAON SERVER itself.

A Second API o�ers access to the server using some network protocol allow-

ing to run the KAON SERVER as a separate process, which may be called by

several clients using a network protocol.

Security Layer

The Security Layer introduces several interceptors which guarantee that oper-

ations o�ered by other components in the server are only available to appro-

priately authenticated and authorized clients. These interceptors could also

provide auditing, i.e. the logging of clients' activities to log �les. These log �les

may be further used, for example by a versioning or evolution component or to

operationalize data roll-back.

Management Layer

This layer encapsulates all "basic" components commonly found in todays ap-

plication servers. The transaction management system is responsible for ensur-

ing the commonly known ACID transaction properties and wraps requests into

transactional boundaries. Component Management is required to deal with the

discovery, allocation and loading of functional components, that are eventually

able to compute the request. Requests may also be replicated and coordinated

between a set of components, if the required functionality can only be provided

jointly.

CHAPTER 3. ARCHITECTURE 16

Data Access Layer

Most requests will include some form of data access. Hence, this layer comprises

of data-related functionality. This includes accessing and updating data. Addi-

tionally inferencing is logically situated in this layer since it manipulates data.

However, we expect that inference itself may be provided by external services, to

which appropriate interfaces must be made available. The integration of these

services has to be seamless concerning the initial user request.

Additional data functionality provided by components located in this layer

may be envisioned, e.g. syntactic and semantic validation of created data.

External Services

This layer comprises all external services that are used in a particular KAON

SERVER con�guration. These services are used via proxy components, which

are managed components within the KAON SERVER and handle the commu-

nication and delegation of requests to the particular external service. If those

proxy components implement functionality that allows management of the exter-

nal service, the external service itself may become manageable through KAON

SERVER, otherwise this is not possible. Examples for external services may be

databases that are used for providing data persistence or inference engines, e.g.

FaCT [5].

3.4 Functional components

The functional layers may be implemented by several functional components.

Figure 3.2 lists all components that are required to be part of KAON SERVER

due to the project proposal as well as several functional components that would

complement the architecture and may possibly be delivered, i.e. the components

of the security layer.

Since the KAON Framework is jointly developed within several projects, fur-

ther yet unspeci�ed functional components may be developed and non-WonderWeb

CHAPTER 3. ARCHITECTURE 17

RDF

Server

Engineering

Server

Relational Tuple

Wrapper / OntoLift

Ontology / Instance

API

RDF Data

API

Java Connector

Component

Registry

Component

Coordination

Request

Replication

Auditing

Logging
Authentication Authorization

Component

Man‘t

Web Service Connector

D
a

ta
A

cce
ss

M
a

n
‘T

S
e
cu

rity
C

o
n

n
e
cto

r

optionally

external

Functional Component

(eventually delivered)

Functional Component

(possibly delivered)

External Service

(Provided by 3rd party)

OntoEdit Adaptor OilEd Adaptor

FaCT Triple OntoBrokerSesame/OMMRelational DB

Triple

Proxy

FaCT

Proxy

OntoBroker

Proxy
Sesame/OMM

Proxy
JDBC Driver

E
x
te

rn
a

l
S
e
rv

ice
s

Figure 3.2: KAON SERVER Functional Components

requirements will be additionally considered, e.g. evolution aspects of ontologies

from the EU-funded OntoLogging project. Also the responsibilities for realizing

some functional components are delivered by project partners, e.g. the FaCT

and OilEd clients.

The functional components which realize the aforementioned three core mod-

ules are discussed in detail in chapters 4 to 6. Here all components in the data

and management layer are described further.

The remaining functional components are left unspeci�ed in this deliver-

able, since separate deliverables will provide more detail on the requirements

and objectives of these modules beyond the description given in the previous

section. The interested reader is referred to the WonderWeb project proposal

for a description of further requirements and a timelime on the realization of

these components.

CHAPTER 3. ARCHITECTURE 18

3.5 Technical Architecture

3.5.1 Component Management

Speaking in technical terms, extensibility is the strongest requirement for KAON

SERVER. Therefore, the fundamental architecture for the server follows the

well-established Microkernel design pattern [4]. This pattern basically separates

minimal core functionality from extended functionality. Core to this approach

is a so-called Microkernel1, which only hosts the a minimal set of functional

components. These components provide functionality

� required for bootstrapping the system itself

� allowing the dynamic extension of the system with further functionality.

In our setting, the Microkernel is realized by the components in the man-

agement layer. They allow to locate, instantiate, con�gure and restart further

functional components dynamically, which is detailed in the following chapter.

3.5.2 Data Access and Data Persistence

Besides component management, further modules dealing with data access and

persistence issues are likely to be part of virtually all KAON SERVER con�gu-

rations. To maximize dissemination and re-usability, components belonging to

those modules have been designed to be used separately on their own without

other functional components and without requiring the component management

infrastructure.

We can envision �ve abstract stand-alone usage scenarios for those compo-

nents which lead to particular con�gurations:

Collaborative Editing of RDF Figure 3.3 illustrates this possiblity. Here,

multiple clients edit a given RDF data set cooperatively, possibly requests are

1The pattern was adopted from a typical design approach for operating systems. Hence

the term "kernel".

CHAPTER 3. ARCHITECTURE 19

issued through the ontology API. An example application for this scenario would

be the collaborative editing of RSS news.

KAON-API

RDF SERVER

Client 1

RDF-API

Network

Client 2

RDF-API

...

Figure 3.3: Collaborative Editing on RDF

Stand-alone Client Figure 3.4 illustrates this possibility. Here, the provided

data access components are used to build a stand-alone application that does

not involve any remote servers. An example application for this scenario would

be a stand-alone ontology editor that operates on RDF �les.

KAON-API

Client

RDF-API

Figure 3.4: Stand-alone client

Persistent Web-application Figure 3.5 illustrates this scenario. Here, the

provided data access components are used to access ontologies persisted in a

database in a non-collaborative and two-tiered manner. For example, this sce-

CHAPTER 3. ARCHITECTURE 20

nario could be applied to build web applications (since they provide request

based processing of data).

KAON API

Client

Direct Engineering

Proxy

Figure 3.5: Persistent Web-application

Collaborative Engineering Figure 3.6 illustrates this possibility. Here, the

provided data access components are used to collaboratively work on a shared

server that hosts a given ontology. An example application for this scenario

would be a cooperative ontology editor.

KAON API

Client 1

Direct Engineering

Proxy

Network

KAON API

Client 2

Direct Engineering

Proxy

...

Remote Engineering

Stub

Figure 3.6: Collaborative Engineering

CHAPTER 3. ARCHITECTURE 21

Shared Web and data server in particular for web applications, since the

web application and the server can be deployed in the same JVM, and thus

increase performance (since the remote call overhead is eliminated).

Application-specific

Client

Network

KAON API

Engineering Server

Figure 3.7: Shared Web

Chapter 4

Component Management

This chapter provides a detailed description of the Component Man-

agement infrastructure that is to be developed for KAON SERVER.

We start with stating the goals for this module, resulting requirements

and objectives and illustrate basic design decisions such as technology

selection and usage scenarios.

4.1 Goals

Since extensibility is the strongest requirement for KAON SERVER, a component-

oriented approach for the development of the server is chosen. The necessary

component management must allow for

� Reuse of functionality from other, existing software,

� Maintainability due to the factorization of complexity into di�erent com-

ponents

� Flexibility due to the dynamic con�guration of the infrastructure

� Adherence to open standards to bene�t from external developments and

maximum dissemination and use by third parties,

22

CHAPTER 4. COMPONENT MANAGEMENT 23

� Understandability due to factorization and by adhering to well-known soft-

ware design patterns

4.2 Requirements

To achieve those goals a sophisticated component management infrastructure

must support

� component life cycle management, this refers to (re)starting and stopping

hosted components

� run-time con�guration, it must be possible to (re)con�gure hosted compo-

nents to avoid unnecessary starts and stops, which would otherwise lead

to invocation overheads

� component localization, components and clients must be able to acquire

references to components

� component interaction, components may rely on the existence of other

components and interact with each other,

� interceptable request, this allows intercepting, queuing, or redirecting of

requests and is needed for sharing generic functionality such as access

control, logging, or concurrency control.

4.3 Objectives

Besides serving the requirements the component management infrastructure

must facilitate adherence towards the following objectives:

� Well-de�ned contracts must ensure that components are accessed and

managed in a uni�ed and consistent manner

� Component dependency management that de�nes exactly how components

interact with each other and the server.

CHAPTER 4. COMPONENT MANAGEMENT 24

� User interface software that allows developers to dynamically con�gure,

maintain, and deploy components.

� Minimal complexity, the component management infrastructure should

aim at minimizing the complexity of a component as seen by another

component

4.4 Design

4.4.1 Technology Selection

Following the established requirements, a detailed research on readily available

components that could suit our needs for the implementation has resulted in

the following technology selection.

Component Management

The Java Dynamic Management Kit is a established solution for component, ap-

plication and device management for the Java platform o�ered by Sun Microsys-

tems. A Java technology speci�cation has been derived from this commercial

tool, called Java Management Extensions (JMX).

JMX is intended to provide tools for building distributed, Web-based, mod-

ular and dynamic solutions for managing and monitoring devices, applications

and service-driven networks. JMX de�nes a universal, open API for manage-

ment, and monitoring. It has already been deployed across many commer-

cial settings, where management or monitoring were needed and is therefore a

promising platform for the construction of the required component management

infrastructure.

Technically, the JMX speci�cation de�nes instrumentation of components

as MBeans, a so-called agent architecture and standard components. The con-

tract for MBeans is simple, easy to implement, and unobtrusive for managed

resources, making the adoption of JMX possible also for external services.

CHAPTER 4. COMPONENT MANAGEMENT 25

Additionally indirection and non-typed invocation make the JMX architec-

ture resilient to changing requirements and evolving interfaces. Components

constructed as MBeans may register or unregister from the server in accordance

with their respective lifecycles, and their interfaces may evolve without having

to disconnect the clients. The latter would allow for 24x7 uptime of the server.

JMX also enables the dynamic management of remote applications running

on a variety of platforms, this could be used to manage external services. Hence,

JMX is suitable for adopting existing systems by implementing new management

and monitoring solutions on top of existing systems.

However, JMX only provides a speci�cation, which may be implemented by

vendors. Several freely and readily implementations exist, e.g. JBOSS MX1

Component Localization

Component localization may be realized by using existing or instantiation of

naming and directory services. The latter play a vital role in today's distributed

systems by providing network-wide sharing of various information about users,

machines, networks, components, and applications. Hence, multiple servers

could share components across the network.

For Java, the Java Naming and Directory Interface (JNDI) is an API that

provides naming and directory functionality to applications written in Java.

Using JNDI, the implementation could build on functionality like the ability

to store and retrieve named Java objects. For example, this may be used to

store a given component temporarily to regain memory or for later use without

startup overhead, i.e. unparsing of XML. In addition, JNDI provides meth-

ods for performing standard directory operations, such as associating attributes

with components and searching for components using their attributes. This

functionality may be extended by associating components with an ontology and

using the ontology to search for suitable components. JNDI o�ers additional

exibility, since di�erent naming and directory service providers may be seam-

1http://www.jboss.org

CHAPTER 4. COMPONENT MANAGEMENT 26

lessly integrated behind the provided common API. Thus, the implementation

may build on di�erent existing naming and directory services, such as LDAP,

NDS, DNS, and NIS(YP), and would allow the server to coexist with further

legacy applications and systems.

Component Management Framework

In order to take advantage of both component management and localization at

the same time, one has to merge both technologies. For this purpose Hewlett-

Packard already de�ned and implemented its so-called Core Service Framework

(CSF) doing exactly this job2.

This free-downloadable and -usable framework serves as a basis for the com-

ponent management module and will be extended in several aspects. E.g. its

component registry has to be changed in order to be Web-aware, dynamic in-

stantiation of KAON-components must be added, localization may be ontology-

enhanced and so on.

4.4.2 Interceptors

Intercepting, queuing, or redirecting requests becomes useful when a component

is being restarted or recon�gured as part of its maintenance life-cycle.

Also, sharing generic functionality such as security, logging, or concurrency

control lessens the work required to develop individual component implementa-

tions when realized via interceptors.

Therefore each component is internally registered with an invoker and a

stack of interceptors that the request is passed through. The invoker object is

responsible for managing the interceptors and sending the requests down the

chain of interceptors toward the managed functional component.

For example, a logging interceptor could be inserted to implement auditing

of operation requests. A security interceptor could be put in place to check that

the requesting client has suÆcient access rights for the component or one of its

2http://www.hpmiddleware.com

CHAPTER 4. COMPONENT MANAGEMENT 27

attributes or operations.

The invoker itself may additionally support the component lifecycle by con-

trolling the entrance to the interceptor stack. When a component is being

restarted, an invoker could block and queue incoming requests until the compo-

nent is once again available (or the received requests time out), or redirect the

incoming requests to another component that is able to service the request.

Readers familiar with the J2EE EJB speci�cation may be aware that this

functionality corresponds the EJB container contract which is usually imple-

mented by setting a stack of interceptors in front of the EJB object. The

request is passed through the interceptors that enforce the EJB speci�cation

functionality.

This is a speci�c instance of the more generic design outlined here.

4.5 Abstract usage scenarios

We can distinguish two abstract scenarios for the usage of the component man-

agement by clients3:

� The usage of available components

� The usage of components that are not available at the time of the request

and have to be instantiated by the component management module

Several parties are involved to compute user requests in those scenarios:

� Clients, issue requests

� Connector, is the interface of the Server to the client

� Component Registry, Part of the module where all components are regis-

tered.

� Component Management, Part of the module that provides component

management functionality.

3Please note, that any component could also be a client to another component as well

CHAPTER 4. COMPONENT MANAGEMENT 28

� Functional component, that provides the requested functionality

� Invocator, that proxies the functional component allowing interceptors to

act in front of method invocations.

Component

Management

Connector

KAON SERVER

External

Services

Proxy

External

Component

Client

Component

Registry

(1)

(2) (3)

Managed

Components

Functional

Component 1

In
v
o

c
a

to
r

Functional

Component n

Network

Network (optional)

...

(4)

In
v
o

c
a

to
r

In
v
o

c
a

to
r

Figure 4.1: Abstract usage scenario with available functional component

Figure 4.1 illustrates the �rst scenario. Here, a client sends a request to

the connector (1) which then accesses the component registry (2) to resolve a

component available to compute the request. The reference to the invocator

of the functional component is then returned to the Connector (3), which then

returns the reference to the client (4). The client can now issue its request, which

passes through the interceptors and should receive the appropriate response.

However, several additional steps have to be performed if a client requests a

functionality that could be provided by some known functional component, but

this component is not instantiated at the time of the request. This situation is

illustrated in Figure 4.2. Here, the registry calls the component management

functionality (A) to dynamically instantiate the appropriate functional com-

ponent (B). The instantiated component is then available to the management

component (C) and added to the registry (D). Notably, the instantiation of a

CHAPTER 4. COMPONENT MANAGEMENT 29

Component

Management

Connector

KAON SERVER

External

Services

Proxy

External

Component

Client

Component

Registry

(1)

(2) (3)

Managed

Components

Functional

Component 1

In
v
o

c
a

to
r

Functional

Component n

Network

Network (optional)

...

(4)

In
v
o

c
a

to
r

In
v
o

c
a

to
r

(A) (B),(C)
(D)

Figure 4.2: Abstract usage scenario without available functional component

component may lead to the cascading instantiation and registration of other

components, if dependencies between components exist.

4.6 Additional bene�ts

� Modular and maintainable software development, since there should be no

need to hard-code invocations to other components, rather a query should

be made to the component registry. This removes "hard dependencies"

which usually complicate maintenance.

� Small memory footprint, since you can con�gure the server to start only

the necessary components required for your application. This avoids using

the system resources by hosting a component no t needed.

� Manageable setup, since con�guration and corresponding components could

be loaded from across the network to the target system. This allows for

a centralized con�guration of a farm of servers and helps the system ad-

ministrators to manage such setups.

Chapter 5

Data Access

This chapter discusses the module that provides access to data within

KAON Server. We introduce two components that realize access to

data. The �rst component allows access to RDF data. The sec-

ond component allows access to ontologies and associated knowledge

bases.

5.1 Goals

The data access module should primarily provide functionality that allows

� access to ontologies and knowledge bases, independent of the particular

data representation, i.e. RDF,

� access to RDF data sets,

� multiple users to access data simultaneously in a safe and consistent man-

ner,

Besides those goals, it is intended to meet the requirements stated for the KAON

framework (see chapter 2).

30

CHAPTER 5. DATA ACCESS 31

5.2 Requirements

The achieve those goals the data access module must support

� Data Modularity, by allowing to compose distributed data,

� Transactional changes, by ensuring the commonly-known ACID proper-

ties,

� Separation of concerns by realizing separate interfaces for the manipulated

entities,

� Adhering to formal semantics by being able to ensure that a given data

set is valid,

� Adhering to the intention of change by ensuring that changes have the

intended e�ect

� Change noti�cation by providing mechanisms that notify other users of

changes

� Human-readable presentation by providing a lexical layer on top on ab-

stract URIs

5.3 Objectives

Additionally to the stated requirements the following objectives should be pro-

vided

� Satisfying performance, all operations should be performed in a satisfying

time frame

� Ability for undos, all operations should be revokable.

CHAPTER 5. DATA ACCESS 32

5.4 Design

Our fundamental design decision was to separate concern on the level of access-

ing ontological and RDF data. Therefore two separate components are devel-

oped. The second design decision was to separate contract from implementation.

Hence, two APIs are established, which could have multiple implementations.

A particular implementation can o�er to implement parts of the contract sepa-

rately. For example, it could decide to implement modularization in a way that

only allows to compose data sets which are hosted by a certain implementation.

5.4.1 Technology selection

Unfortunately no readily available components exist that ful�ll the aforemen-

tioned requirements. The Jena project [10] provides both an ontology API and

an RDF API, which are separate software entities. However, neither means for

transactional processing, nor modularity nor consistent change operations are

provided.

For RDF, a second API written (but no longer maintained) by Sergej Melnik

at Stanford exists [12], however it fails to meet the requirements as well. To get

started with an RDF access component, this implementation can be used as a

guideline for crafting the interfaces used in our implementation.

5.4.2 RDF API

The RDF API is a set of interfaces that can be used to manipulate RDF mod-

els. Concern is separated from contract, thereby alternative implementations of

the contract, i.e. the interfaces, are possible. Hence, it is possible to use the

functionality provided by the data persistence module (cf. chapter 6).

Therefore clients of the RDF API component are isolated from the actual

medium for RDF storage. However, the RDF API is primarily useful for in-

memory manipulation of RDF models. For example, it can be used by the

ontology API to read and access RDF-based ontologies.

CHAPTER 5. DATA ACCESS 33

In accordance with the requirements the interfaces must o�er transactional

manipulation of RDF models with the possiblity of modularization. Addition-

ally, a streaming-mode RDF parser has to be provided to read from �le and

socket streams. Eventually, also a RDF serializer for writing RDF models is

required. The implementation of the RDF API should be able to successfully

read large RDF models like WordNet [14].

Further usability issues arise with RDF, which should be tackled by aug-

menting the RDF model. For example, URIs of RDF elements change when

stated relatively to the base URI of the RDF model. For example, when an

ontology is moved on the web or downloaded to the �lesystems all relative iden-

ti�ers change and make data operation nearly impossible since there is no way

to tell that elements with di�erent URIs are referring to the same thing.

The API should therefore di�er between physical and a logical URIs of RDF

models. The physical URI reects the place from which the model has been

loaded, e.g. the �le system. While the logical URI is typically unique among all

models. For example, a model may have the logical URI http://kaon.semantic-

web.org/myModel.kaon, but may be stored at �le:/c:/temp/model.kaon. We

propose to generate unique resource names (URN) to ensure the uniqueness of

logical URIs.

Object-Oriented Interfaces

The interfaces used to access and manipulate RDF data are generally very

simple, since RDF itself is a simple data model. Hence, each RDF model is

represented through the Model interface, which de�nes methods for model ma-

nipulation. A Model is viewed as a set of Statement objects. Each Statement

has a subject, predicate and a object. Subject and predicate are Resource ob-

jects, while the object may be either a Resource of a Literal object.

Statement, Resource and Literal objects are immutable. Clients must use

a dedicated Factory object to create statements, resources and literals. This

factory ensures that there is at most one physical Statement, Resource or Literal

CHAPTER 5. DATA ACCESS 34

object with a given URI (singleton objects). By using this technique the memory

consumption can be greatly minimized, however the fact that statements may

have been multiply de�ned in the RDF source is lost.

Creating a Statement should not be equivalent to inserting it in the model.

Rather statements are added to the model using the Model.add() method which

has to be executed within transactional boundaries. Similarly, a statement may

be removed from the model using Model.remove() method.

According to the requirements the RDF API supports modularization of

models. Any RDF model can be included in any other RDF model. Including a

model should not copy statements from the included model. Rather, it creates

a virtual union.

This way requests, e.g. queries, on the outer model may be forwarded to

included models. Each model can be represented as a managed component,

hence the inclusion dependency could be expressed via component dependencies.

This way it is possible to join models of di�erent API implementations (for

example, in-memory models may be joined with the RDF server-based models).

5.4.3 Ontology and Knowledge Base API

This component is realized by the KAON API. It isolates clients from di�erent

API implementations and provides a uni�ed interface. It deals with objects rep-

resenting various pieces of an ontology, such as Concepts, Relations, Attributes

or Instances. Besides, there are objects for creating and applying changes to

ontology entities as well as objects providing query facilities. The KAON API

itself doesn't implement persistence, concurrency or security. Rather, it relies

on lower layers to provide these features.

Implementations of the KAON API are responsible for providing consistency

of the underlying ontology. Access to the API is performed through a dedicated

evolution strategy whose purpose is to de�ne and implement a set of change

rules.

For example, when a concept is removed from an ontology, it must be decided

CHAPTER 5. DATA ACCESS 35

what to do with its subconcepts - they may be deleted, attached to the parent

of the deleted concept or attached to ontology's root concept.

Several evolution strategies may be implemented for each of these policies,

allowing the user to choose an appropriate policy when the ontology is instanti-

ated. Finally, in order to improve performance, the KAON API allows for using

a caching scheme. In that way many costly requests to remote data servers may

be avoided and the overall application performance increased.

The Observable design pattern is used for noti�cations about model changes,

thus achieving low coupling between model and associated views. All changes

to the application model, whether local or remote, are propagated to registered

listeners allowing them to display model updates immediately as they happen.

The Java Messaging Service (JMS) is used to propagate change noti�cations

in distributed environments. The API is entirely based on interfaces, allowing

users to choose the appropriate implementation, depending on their needs.

In the following sections we discuss the ontology languages supported by the

KAON API, its object-oriented interface and the di�erent implementations of

the KAON API.

Ontology Languages

RDFS (Resource Description Framework Schema) builds on top of RDF and

is a language for de�ning light-weight ontologies in the Semantic Web. Its

possibilities are rather basic allowing only the de�nition of classes, properties

with their respective hierarchies as well as domains and ranges.

The Web Ontology Language (OWL) [11], which is currently developed by

the W3C, will play a major role in the Semantic Web as standard ontology

modeling language. OWL attempts to capture many of the commonly used

features of DAML+OIL. It also adds functionality beyond RDFS in order to

come up with a powerful language useful for semantic web applications.

OWL will consist of several layers starting with the so-called OWL Lite

that attempts to choose features that do not impose too many restrictions on

CHAPTER 5. DATA ACCESS 36

toolbuilders. Compared to RDFS, OWL Lite additionally features

� Equality and Inequality

{ sameClassAs

{ samePropertyAs

{ sameIndividualAs

{ di�erentIndividualFrom

� Property characteristics

{ inverseOf

{ transitive

{ symmetric

{ functionality of properties

(properties with min cardinality 0 and max cardinality 1. The same

DAML+OIL side conditions hold that a transitive property (nor its

superproperties) may not be declared functional.) [6]

� Datatypes

Datatypes will be included. Thus, for example a range could be stated

to be XSD:decimal. The exact details of this is dependent upon the RDF

core group's decisions on datatypes for RDF.

� Additions

{ universal local range restrictions

{ existential local range restrictions

{ minimum and maximum cardinality

The KAON API will support OWL Lite after its standardization. In order

to cope with the envisioned and more powerful OWL Full layer, additional

inference components will be needed. In lack of standardization and current

CHAPTER 5. DATA ACCESS 37

dispute on the provided features, the KAON API currently realizes the ontology

language described in [15]. The implementation adheres to the formal semantics

given there. The language is based on RDF(S) and contains some proprietary

extensions that may be available in OWL Lite. Additionally it provides:

� Meta-modeling a concept can be treated as an instance of some other

meta-concept. Precise semantics is associated with such cases.

� Lexical layer lexical information about ontology entities is explicitly

stored in the ontology and can be manipulated using the usual constructs.

Object-oriented Interface

Consistently with the terminology established in [15], ontologies and associated

knowledge bases are referred to as OI-models (ontology-instance-model). The

object-oriented representation consists of two objects representing an ontology

and an instance pool, thereby separating concerns. We refer to an instance pool

as being a set of instances and their actual relations1.

An ontology consists of concepts (represented as Concept objects) and prop-

erties (represented as Property objects). A property has domain and range

restrictions, as well as cardinality constraints. It may be an inverse of some

other property, and may be marked as being transitive or symmetric. An in-

stance pool consists of instances (represented through Instance objects) that

may be linked with other instances. Each concept or property may have an

instance associated with it through a spanning object. An UML-diagram of the

API is shown in Figure 5.1.

Model Change

The object-oriented interface does not provide methods for performing changes.

Instead Change is modelled by an event model. This allows to compile a list

1Since OI-Models allow means for modularization, the reexive edge in the UML diagram

(cf. [15]) is used. There will also be means for expressing equivalence between classes as well

as properties because this will be required by OWL.

CHAPTER 5. DATA ACCESS 38

Concept

CardinalityConstraint

maxCardinality
minCardinality

Figure 5.1: UML-View of KAON-API

CHAPTER 5. DATA ACCESS 39

of changes, which demark a natural transaction boundary, since changes should

either be applied altogether and or none at all. Hereby Isolation and Atomicity

of Changes are guaranteed. Additionally Changes and groups of changes can be

revoked easily be performing compensating actions for each change in reverted

order.

Single changes will often leave the model in an inconsistent state. Rather,

additional changes are necessary to �x other parts of the model. For example,

the user may request deleting a concept. To perform this operation, the respec-

tive concept must �rst be detached from its parents and children; children need

to be reconnected to some other node etc.

Thus, a single user-initiated change may cause additional changes to be

executed. Therefore the API realizes so-called Evolution Strategies whose task

is to compute the additional changes required to be consistent with the intention

of the change. The user may express her intention by choosing an appropriate

strategy implementation.

The decision to model changes by sets of events instead of o�ering appro-

priate operations for manipulation has additional bene�ts of when accessing

remote servers. Here, a set of change events can be packed into a list and be

sent to the server all at once. This reduces network communication overhead.

However, it requires local caching of information.

The Event-based design further enables evolution strategies that optimize

updates. For example, elements are often moved in the ontology and attached

to another place. If implemented strictly sequential, the move operation would

�rst remove an element together with all ancillary data, and add the elements

afterwards at the new location.

By representing all requested changes as objects, the evolution strategy

knows in advance which changes need to be performed, and can prevent un-

necessary deletion and later addition of information.

CHAPTER 5. DATA ACCESS 40

5.4.4 Implementations

RDF API

Selection of the implementation To allow the usage of several implemen-

tations, each implementation is separately registered with the component man-

agement module. Each implementation has to provide a factory object, that

can be used to instantiate RDF models that use the particular implementation.

Additionally, implementations could be selected by assigning URI-pre�xes

to an appropriate implementation. E.g. http or �le for instantiation of the in-

memory implementation or database for the instantiation of a database imple-

mentation, etc. Then the component registry can be used to query a component

that is able to handle URIs with a given pre�x.

Proprietary extensions The RDF parser realizes proprietary extensions for

model inclusion and assignment of logical and physical URIs by means of XML

processing instructions. Note, that XML parsers are required to ignore unrec-

ognized processing instructions. Hereby, serialized RDF models are guaranteed

to be interoperable with other RDF parsers.

KAON API

Some implementations of the APIs are realized on top of the data persistence

module which is responsible for common requirements, such as persistence, re-

liability, transaction and concurrency support.

Apart from providing abstractions for accessing ontologies, the KAON API

also integrates di�erent sources of ontology and data by o�ering di�erent API

implementations for various data sources. E.g. an implementation for relational

databases or one working with RDF �les by using the RDF API.

The following KAON API implementations may be used:

Implementation for RDF repository access An implementation of the

KAON API based on the RDF API may be used for accessing RDF repositories.

CHAPTER 5. DATA ACCESS 41

KAON-API

ImplKAON-RDF-ImplOther Impl

RDF-API Other

Stanford Impl

Figure 5.2: KAON API Implementations

The so-called Stanford implementation of the RDF-API [12] is primarily useful

for accessing in-memory RDF models. However, it may be used for accessing

any RDF repository for which RDF API implementations exist. KAON RDF

SERVER is such a repository that enables persistence and management of RDF

models and is described in more detail in chapter 6.

Implementation for accessing any database Another implementation of

the KAON API may be used to lift existing databases to the ontology level. To

achieve this, one must specify a set of mappings from some relational schema to

the chosen ontology, according to principles described in [16]. E.g. it is possible

to say that tuples of some relation make up a set of instances of some concept,

and to map foreign key relationships into instance relationships. After transla-

tions are speci�ed, an OI-model is generated. When accessed, the model will

translate the request into native database queries, thus ful�lling most requests

directly within the database itself. Similarly, the OI-model will translate on-

tology update requests to a series of updates to the underlying database. In

such a way, the persistence of ontology information is obtained, while reusing

well-known database mechanisms such as transactional integrity.

Implementation optimized for ontology engineering A separate imple-

mentation of the KAON API may be used for ontology engineering. This im-

plementation provides eÆcient implementation of operations that are common

during ontology engineering, such as concept adding and removal by applying

transactions.

CHAPTER 5. DATA ACCESS 42

5.5 Additional bene�ts

The implementations of the KAON API ful�ll the stated requirements. Addi-

tionally, we consider it suitable for enterprise-wide application because of the

following reasons:

� Well-known technologies are used for ontology persistence and manage-

ment, such as Enterprise JavaBeans (EJB)2 and relational databases.

� The same technologies already realize many of the needed requirements:

transactions, concurrent processing and data integrity come "for free".

� Because of the structure of conceptual models, a majority of requests is

executed by the underlying databases, thus ensuring scalability in case of

large information quantities. By choosing an appropriate API implemen-

tation it is possible to tune the system's performance for the given usage

scenario.

2http://java.sun.com/products/ejb/

Chapter 6

Data Persistence

This chapter provides a detailed description of the data persistence

module. We follow the established pattern of de�ning goals, deriving

requirements and establishing further objectives. These are consid-

ered in the following discussion of our fundamental design. Along

these lines an extensive survey of related systems is given.

6.1 Goals

The goal of the data persistence module is to provide a set of components that

allow to store RDF and ontological data in order to achieve durability.

6.2 Requirements

The goal itself imposes few requirements, however the provided components

must deal with requirements that arise from the basic design of the server (cf.

chapter 3). Hence, it must enable

� De�nition of a data basis

� Access operations for data

43

CHAPTER 6. DATA PERSISTENCE 44

� Update operations for data

� Persistence of data

� Concurrent transactional access

� Data security, e.g. in case of a system crash, a consistent recovery of data

is required

� Change noti�cation mechanisms to provide collaboratively working users

with information about changes made by others

� standalone deployability, to maximize dissemination and allow for usage

scenarios, such as sketched in the basic architecture 3.

6.3 Objectives

Complementing the requirements we intend to

� simplify the installation of the data persistence modules as far as possible

� avoid requiring proprietary products by adhering to open standards

6.4 Design

To achieve the intended goal and ful�ll the requirements, extensive use of avail-

able third party technologies, i.e. relational databases and application servers

can be made and leads our design considerations. However, it is particularly im-

portant to acknowledge the objectives to maximize dissemination, i.e. through

easy installation, and to avoid being bound to proprietary solutions.

We can follow fundamental architectural patterns for implementing data

management solutions such as the ISO 5-layer architecture for database systems

(cf. Figure 6.1).

CHAPTER 6. DATA PERSISTENCE 45

Logical RDF DB

Data Structures: Triples

Operations: RDF API

Logical Ontology DB

Data Structure: Ontology

Operations: KAON API

Persistent Medium

Data Structures: Tracks, Cylinders, Sectors

Operations: Device Specific, Channel Programs

Memory Management

Data Structures: Partitions, Blocks

Operations: Read/Write Blocks

Cache & Page Management

Data Structures: Pages, Segments, Buffers

Operations: Allocation/Destruction of Pages

Physical DB

Data Structures: Trees, Hashtables

Operations: Structure Specific

Internal DB

Data Structures: Relations

Operations: rel. Algebra

Figure 6.1: ISO database management architecture

Additionally the developed components should be able to be deployed as

stand alone servers that are possible to use without other, e.g. RDF and ontol-

ogy repositories.

6.4.1 Technology Selection

BerkeleyDB-based RDF databases

BerkeleyDB is a popular embedded database used in other products for data

persistence. It provides transactions and a XA interface for transactional syn-

chronization via transaction monitors. It provides data structures, i.e. B-Trees

and Hashtables, and access methods for manipulating those structures. Hence,

CHAPTER 6. DATA PERSISTENCE 46

it provides persistence functionality up to level 3 of the standard database archi-

tecture. Several RDF databases are built using BerkleyDB or similar products

like DBM-variants.

RDFDB RDFDB1 is the oldest RDF database and provides a simple, scal-

able (tested to 20 Mio. triples), open-source database for RDF data. It provides

a textual query language in style of SQL to interface with the system. It may

be used as a stand alone server and can be connected to via a socket interface.

RDFDB provides limited and non-transactional updating of data. This restric-

tion is a knock-out criteria due to the requirement of concurrent transactional

access. It could be used for our purposes only by implementing transactions

ourselves, however this appears to be more complex than implementing RDF

data persistence.

Redland Redland2 provides several RDF-related functionalities, among those

are means for storing and querying RDF. It is developed at the University of

Bristol. Storage mechanisms for models are provided via Berkeley DB, a query

API is provided via Statement matching. Again, no transactional updates are

possible.

RDFStore RDFStore3 is a set of Perl modules targeted at RDF processing,

including persistence using Berkley DB and DBM low-level database routines. It

provides a query language which implements the SquishQL language. Additional

features are RDF Schema inference on triples is provided and free-text searchs

on literal values.

RDBMS-based RDF databases

The implementation of those databases relies on a full relational database to pro-

vide persistence. Hence, users are required to install a SQL-compatible database

1http://www.guha.com/rdfdb/
2http://www.redland.opensource.ac.uk/
3http://rdfstore.sourceforge.net/

CHAPTER 6. DATA PERSISTENCE 47

to use the particular product. Conceptually the provided solutions operate on

the �fth level of the standard DBMS architecture. Data access is realized by

transformation of requests to appropriate SQL queries, which are then issued

to the logical database level of the used relational database.

EOR - Extensible Open RDF Store The Extensible Open RDF store

(EOR)4 constitutes an open source project provided by the OCLC OÆce of

Research and the Dublin Core Metadata Initiative. The current release pro-

vides services designed to validate RDF, to infuse RDF instance data into RDF

databases. Querying is possible via triple-matching with wildcards.

EOR provides only basic, non-transactional update support. Hence, the

same restrictions apply that were stated for RDFDB. An additional risk factor

to relying on EOR is the fact, that the project appears to be extended rather

sporadically leading to slow progress. The latest release is 15 months old.

RDFSuite RDFSuite5 is provided by ICS-Forth, Greece with a suite of tools

for RDF management, among those is the so-call RDF Schema Speci�c Database

(RSSDB) that allows storing and querying RDF using a RDF Query Language

(RQL) [17]. For the implementation of persistence an object-relational DBMS

is exploited. It uses a storage scheme that has been optimized for querying

instances of RDFS-based ontologies. The database structure is tuned towards

a particular ontology structure. While this leads to a very eÆcient and scal-

able querying of instances, updates on the ontology lead to reorganization of

the database structure and are necessarily non-transactional, since relational

databases do not embed the removal and creation of relations into transactional

boundaries. Hence, no transactions are provided and cannot be provided by

custom implementation due to the initial design.

Sesame Sesame [7] is a RDF Schema-based Repository and querying facility

developed by Aidministrator Nederland bv as part of the European IST project

4http://eor.dublincore.org/
5http://www.ics.forth.gr/proj/isst/RDF/

CHAPTER 6. DATA PERSISTENCE 48

On-To-Knowledge6. The system provides a repository and query engine for RDF

data and RDFS-based ontologies. It uses a variant of RQL that captures further

functionality from RDF Schema speci�cation when compared to the RDFSuite

RQL language. Sesame shares its fundamental storage design with RDFSuite.

Hence, the same restrictions apply that fail to meet our requirements.

Alternatively BerkeleyDB / RDBMS-based RDF databases

Two solutions abstract allow con�guration of the used persistence solution and

o�er means to store data via SQL-based relational databases and the Berke-

leyDB embedded database.

4Suite Server - Versa 4Suite Server is a platform for XML and RDF pro-

cessing provided by Fourthought7. Among the provided tools is a RDF data

repository. The server supports data access through a dedicated API and o�ers

a query and inference language called Versa. It provides the data infrastructure

of a full database management system, including transactions and concurrency

support, access control and a variety of management tools. For purposes of inte-

gration with other tools, it supports remote, cross-platform and cross-language

access through HTTP (including native SOAP and WebDAV), RPC FTP and

CORBA exists. It o�ers APIs in Python, HTTP, SOAP and XSLT. It is the only

component o�ering transactions. However, �rst tests of the software showed sev-

eral problems. It was not able to process non-latin character sets (like UTF-16)

and failed to import large amounts of RDF data. However, this appears to be

the most promising option for our implementation.

Jena - RDQL Developed by the Hewlett-Packard Research, UK, Jena8 is a

collection of RDF tools including a persistent storage component and a RDF

query language (RDQL9). For persistence the Berkley DB embedded database is

6EU-IST-1999-10132
7http://www.fourthought.com/4SuiteServer/
8http://www.hpl.hp.com/semweb/jena-top.html
9http://www.hpl.hp.com/semweb/rdql.htm

CHAPTER 6. DATA PERSISTENCE 49

used. Alternatively any JDBC-compliant database may be used. Jena abstracts

from storage in a similar way as our design. However no transactional updating

facilities are provided. Additionally the scalability of the provided solution

could not be veri�ed. Processing large sets of RDF data (such as WordNet)

lead to a system break-down when tested in April 2002. Again, the requirement

for concurrent transactional access makes the solution less attractive for our

purposes.

Other RDF databases

IntelliDimension RDF Gateway - RDFQL RDF Gateway is a distributed

data semantic query service and inference infrastructure developed by Intellidi-

mension Company. It comprises of two basic modules:

� Data Services that translate structured data into a knowledge base of RDF

triples,

� Query Service that takes queries and inference rules, processed through

a query Language called RDFQL on the knowledge base through a logic

layer.

The Data Service module is designed to interface with arbitrary data sources,

e.g. XML �les, relational databases, or email accounts, which are mapped into

RDF triples. Hence, it cannot be considered as a data repository, which provides

a persistence component, but a dynamic knowledge representation framework,

and fails to meet our purpose.

6.4.2 Persistence strategies

Looking at the provided solutions shows several possible design variants for

implementing the persistence modules. Additionally, two further solutions are

possible, which have not been considered for RDF databases before.

Obviously, we do not intend to operate on a operation system level, such as

working on pages etc.

CHAPTER 6. DATA PERSISTENCE 50

Reusing Physical Databases

The �rst realistic option for implementing persistence is translation of requests

to access methods on the structure of the third, namely physical database layer.

Several example systems, i.e. the systems reported in section 6.4.1, use this

approach. Hence, the prerequisite for the implementation would be the use of

an embeddable database, such as BerkeleyDB.

While this solution allows for very fast processing and does not exclude

transactions, several diÆculties arise. First, we do not follow the standard

architecture, which introduces a further layer, between the logical database

and the actual physical data structures. Usually requests are made by users

in a declarative query language, such as SQL, which is later translated into an

executable program on the internal database, such as an expression in relational

algebra. Query optimization techniques are applied during this translation.

Hence, such optimization techniques, which are essential for complex query

languages, may be more diÆcult to implement.

This also motivates why this solution was only taken by RDF databases,

which do not consider ontologies (such as RDFS) at all. Due to the simplic-

ity of the data model, the provided query languages are very simple. Hence,

the implementation of complex operations on ontologies would be very time

consuming.

Reusing Internal Databases

A second possibility is to allow for query optimization by relying on a more

abstract data representation, such as provided by internal databases. Requests

on the logical database level can be translated into operations on this level using

established optimization techniques.

While this has not been done for any RDF database, the upcoming IBM

DB2 version ("XPeranto")10 o�ers such possibilities. Here a declarative query

on XML and relational data formulated in the XQuery language [3] is translated

10http://xperanto.dfw.ibm.com/demo/

CHAPTER 6. DATA PERSISTENCE 51

directly into the internal, executable query plan formulated in the DB2 Query

Graph Model (QGM) - which is a patented variant of relational algebra.

Obviously, access to the internal representation of a database is required to

implement this persistence strategy. While the implementation is tremendously

simpli�ed for complex operations on ontologies, the bene�ts for RDF would be

rather low. Additionally a tremendous limitation is imposed by the fact, that

the implementation is bound to a particular database such as DB2.

Reusing Logical Databases

This leads to a strategy used by several RDF databases, which consider RDFS

in query processing, such as most systems presented in section 6.4.1.

Here logical data access operations on RDF and ontologies are served by

exploiting the logical DB structure of a relational database. Hence, all requests

are translated into declarative SQL queries.

Using SQL imposes the prerequistive of having to relay on an existing rela-

tional database. However, the dependency is no hard constraint, since SQL is

an open standard, that is more or less followed across database vendors. Also,

acceptable speed may be achieved, however it is tremendosly lower than the

other databases.

Reusing XML databases

An alternative strategy could be to reuse existing XML databases such as

Tamino11 and reuse the fact that RDF has a XML-based syntax. Then RDF

must be normalized into one of its many representations, stored as XML and

requests may be transformed to an appropriate declarative XML query language

that operates on the logical database.

However, we may not be able to gain large performance, since XML query

languages usually rely on indexing structures for achieving eÆciency. These

indexing structures are usually created on an XML element level and not on an

11http://www.softwareag.com/tamino/

CHAPTER 6. DATA PERSISTENCE 52

attribute level, which would be required for RDF (since objects are identi�ed

using rdf:id / rdf:about attributes).

This option has not yet been explored by existing systems.

Reusing Object-Relational Mapping Speci�cation

Another alternative, which is actually outside of the standard database archi-

tecture and employed by modern application servers is to serve requests like

invoking methods and accessing attributes of objects by automated translation

of those requests to relational representations of objects, which have been cre-

ated automatically as well.

Such services are o�ered by object-relational mapping services, e.g. Java

Data e.g. Java Data Objects (JDO)12, container-managed Enterprise Java

Beans (EJB)13 etc.

Using such services require existing relational databases, an appropriate

EJB/JDO implementation and (for EJB) an application server.

Usually using such services has tremendous bene�ts like automatism, easy

installation, portability across database vendors (due to speci�c implementa-

tions). For EJB this also provides the necessary remote interfaces and stand-

alone deployability on J2EE-certi�ed application servers.

However, a major restriction is largely imposed by the automatism itself.

It is hard to control and hard to optimize. This imposes serious restrictions

with simple data models such as RDF, where large quantities of information are

represented in an uniform manner.

6.4.3 Storage Structures

Considering our requirements and objectives naturally leads to the third solu-

tion of implementing persistence via translation to the logical level of existing

relational databases. Several alternatives for physically storing ontologies exist

12http://access1.sun.com/jdo/
13http://java.sun.com/products/ejb/

CHAPTER 6. DATA PERSISTENCE 53

after choosing this particular persistence strategy. The physical organization of

data is of central importance concerning the eÆciency of data access methods.

However, there is no single, winning solution. Rather, the performance of

a particular physical representation depends highly on the particular applica-

tion setting. Hence, the below mentioned variants do not constitute exclusive

alternatives but alternative proposals.

In the end, we envision to realize two separate persistence components with

dedicated storage structures:

� RDF SERVER utilizing the Triple structure, and

� ENGINEERING SERVER utilizing the Metamodel structure

Per class and property structure

This is the optimal physical schema for instance manipulation and has been

applied in several systems, such as RDFSuite and Sesame (cf. Figure 6.2). Here

data is stored in a way, that two kinds of relations are created:

� unary relations for each class

� binary relations for each property

Given RDF data is then sorted into such tables. Apparently it is ideal

for eÆcient querying of instance data. This is due to the fact that only few

additional but unnecessary information is fetched from the physical data store by

the relational database. The latter applies a technique called pre-fetching that

loads additional blocks form the persistent medium when touching a particular

storage area. This enhances performance due to the fact that swapping data in

and out of memory can be minimized.

However, as discussed before, the fact that new relations have to be created

for new classes and properties and relations are deleted when a class or property

is no longer populated with instances prevents transactional processing if such

operations are requested.

CHAPTER 6. DATA PERSISTENCE 54

Figure 6.2: Per class and property storage

Per metaclass and -property structure

Alternatively, a storage structure that is based on storing information on a meta-

model level is possible. Here a �xed set of relations is used, which corresponds

to the structure of the used ontology language. Then individual concepts and

properties are represented via tuples in the appropriate relation created for the

respective meta-model element (cf. Figure 6.3).

This structure was not chosen before by any other RDF database, however

it appears to be ideal for ontology engineering, where the number of instances

(all represented in one table) is rather small, but the number of classes and

properties dominate. Here, creation and deletion of classes and properties can

be realized within transactional boundaries.

CHAPTER 6. DATA PERSISTENCE 55

Concept

Property

URI

Ontology

SubConceptOf

Property

Domain

Range

URI

Ontology

Ontology

URI

Property Instance

Domain value

Range value

Property

Ontology

Instance

Concept

URI

Figure 6.3: Per metaclass and -property storage

Triple structure

Another solution is to rely on a physical structure that corresponds to the RDF

model. Hence, data is represented using minimally two relations, one represents

models and the other one represents statements contained in the model (cf.

Figure 6.4).

However, such simplistic structures are highly suboptimal for RDF, since

usually a large number of joins are made to traverse object links. Hence in-

dexing structures are needed on all elements of a statement and eÆcient data

lookup is required. Usually this could be achieved using hashed indexes, which

could provide lookup of a particular data element in constant time. However

hashtables need a good distribution on keys for their values. This is not the fact

for URIs (which have mostly similar pre�xes) and also not for automatically

incremented ids.

CHAPTER 6. DATA PERSISTENCE 56

Figure 6.4: Triple structure

Consequently, this representation needs further relations to represent re-

sources and literals and must provide an internal identi�er that exhibits good

indexing properties to provide eÆcient indexes on the statement relation.

Chapter 7

Conclusion

This deliverable presented KAON SERVER, the main organisational unit and

infrastructure kernel of Workpackage 2. It will become part of the open-source

Karlsruhe Semantic Web and Ontology Toolsuite (KAON). The server con-

sists of the three modules Component Management, Data Access and the op-

tional Data Persistence. Each module has been discussed in detail describing

goals, requirements, objectives and design issues. Yet, the architecture pre-

sented in this deliverable has to be viewed as an initial design which will be

evaluated and incrementally improved. The latest versions can be accessed

via the Karlsruhe Semantic Web and Ontology Tool Suite (KAON) website

http://kaon.semanticweb.org.

57

Appendix A

Glossary

Component: Managed software entity providing certain functionality.

Component Management: Module of the KAON SERVER concerned with initializing, creating, start-

ing, stopping, monitoring of components.

Deployment: Process of registering a component to an appropriate management system.

Data Access: Module of the KAON SERVER consisting of APIs allowing access to on-

tologies and associated knowledge bases (i.e. KAON-API) as well as an

API allowing access to RDF data (i.e. RDF-API). Both APIs make up

the components of this module and may have multiple implementations

(cf. Data Persistence).

Data Persistence: Module of the KAON SERVER consisting of implementations of the APIs

de�ned for Data Access. There are two for the RDF-API, both a tran-

sient and a persistent called KAON RDF SERVER. The KAON-API, on

the other hand, features an implementation on top of the RDF-API as

well as the so-called Engineering server directly connecting to a database-

management-system.

KAON RDF SERVER: Component belonging to the Data Persistence module. It implements the

58

APPENDIX A. GLOSSARY 59

RDF-API by utilizing a database-management-system instead of XML-

�les.

KAON SERVER: Consists of three core modules, viz. Data Access, Data Persistence and

the optional Component Management. Each module consists of several

components.

Module: Functional group of components.

Service: Independent software entity, non-managed, usually readily provided by a

third party. Also referred to as External Service.

Bibliography

[1] R. Studer Y. Sure R. Volz A. Maedche, S. Staab, Seal - tying up information

integration and web site management by ontologies, IEEE Data Engineering

Bulletin (2002), 10{17.

[2] E. Bozsak, M. Ehrig, S. Handschuh, A. Hotho, A. Maedche, B. Motik,

D. Oberle, C. Schmitz, S. Staab, L. Stojanovic, N. Stojanovic, R. Studer,

G. Stumme, Y. Sure, J. Tane, R. Volz, and V. Zacharias, Kaon - towards

a large scale semantic web, Proceedings of EC-Web 2002, Springer, 2002.

[3] J. Robie J. Simeon D. Chamberlin, D. Florescu and M. Stefanescu, Xquery:

A query language for xml, Working Draft, W3C, June 2001.

[4] Hans Rohnert Peter Sommerlad Michael Stal Frank Buschmann,

Regine Meunier, Pattern-oriented software architecture, volume 1: A sys-

tem of patterns, vol. 1, John Wiley and Son Ltd, 1996.

[5] I. Horrocks, The fact system, Automated Reasoning with Analytic

Tableaux and Related Methods: International Conference Tableaux'98,

Springer, 1998.

[6] U. Sattler I. Horrocks and S. Tobies, Practical reasoning for description

logics with functional restrictions, inverse and transitive roles, and role

hierarchies, Proceedings of the �rst workshop on Methods for Modalities

(M4M-1), 1999.

60

BIBLIOGRAPHY 61

[7] Frank van Harmelen Jeen Broekstra, Arjohn Kampman, Sesame: A generic

architecture for storing and querying rdf and rdf schema, Proceedings In-

ternational Semantic Web Conference 2002, Springer, 2002.

[8] R. Volz L. Stojanovic, N. Stojanovic, Migrating data-intensive web sites

into the semantic web, ACM Symposium on Applied Computing SAC 2002,

2002.

[9] O. Lassila and R. Swick, Resource description framework (rdf) model and

syntax speci�cation.

[10] Brian McBride, Jena: Implementing the rdf model and syntax speci�cation,

Proceedings of SemWeb 2001, 2001.

[11] Deborah L. McGuinness, Proposed compliance level 1 for webont's ontology

language owl, Knowledge Systems Laboratory, Stanford University.

[12] Sergej Melnik, Rdf api, Current revision 2001-01-19.

[13] Stefan Decker Michael Sintek, Triple - an rdf query, inference, and trans-

formation language, In proceedings ISWC'2002, Springer, 2002.

[14] Richard Beckwith Christiane Fellbaum Derek Gross Miller, George A. and

Katherine A. Miller, Introduction to wordnet: An on-line lexical database,

International Journal of Lexicography 3 (1990), no. 4, 235{244.

[15] B. Motik, A. Maedche, and R. Volz, A conceptual modeling approach for

building semantics-driven enterprise applications, Proceedings of the First

International Conference on Ontologies, Databases and Application of Se-

mantics (ODBASE-2002), November 2002.

[16] L. Stojanovic N. Stojanovic, R. Volz, A reverse engineering approach for

migrating data-intensive web sites to the semantic web, IIP-2002, August

25-30, 2002, Montreal, Canada (Part of the IFIP World Computer Congress

WCC2002).

BIBLIOGRAPHY 62

[17] G. Karvounarakis D. Plexousakis S. Alexaki, V. Christophides, On storing

voluminous rdf descriptions: The case of web portal catalogs, In Proceedings

of the 4th International Workshop on the Web and Databases (WebDB'01)

- In conjunction with ACM SIGMOD/PODS, Santa Barbara, CA, pages

43-48, May 24-25, 2001.

[18] C. Goble S. Bechhofer, I. Horrocks and R. Stevens, Oiled: a reasonable

ontology editor for the semantic web, Proc. of the Joint German Austrian

Conference on AI, number 2174 in Lecture Notes In Arti�cial Intelligence,

pages 396-408, Springer, 2001.

[19] Dieter Fensel Rudi Studer Stefan Decker, Michael Erdmann, Ontobroker:

Ontology based access to distributed and semi-structured information, DS-8,

1999, pp. 351{369.

[20] L. Stojanovic, A. Maedche, B. Motik, and N. Stojanovic, User-driven ontol-

ogy evolution management, Proceedings of the 13th European Conference

on Knowledge Engineering and Knowledge Management EKAW, October

2002.

[21] J. Angele S. Staab R. Studer D. Wenke Y. Sure, M. Erdmann, Ontoedit:

Collaborative ontology development for the semantic web, Proceedings of

the 1st International Semantic Web Conference (ISWC2002), June 9-12th,

2002, Sardinia, Italia, Springer, 2002.

