IST Project 2001-33052 Wonder\Web:
Ontology Infrastructure for the Semantic Web

KAON SERVER Demonstrator

Daniel Oberle, Steffen Staab, Rudi Studer, Raphael Volz

University of Karlsruhe,
Institute for Applied Informatics and Formal Descriptions Methods (A1FB)
D-76128 Karlsruhe
email: {l ast nane}@i f b. uni - kar| sruhe. de

Identifier Del 7
Class Deliverable
Version 11

Date 07-15-2004
Status Final

Distribution Public
Lead Partner AIFB

IST Project 2001-33052 Wonder\Web:
Ontology Infrastructure for the Semantic Web

Wonder Web Proj ect

This document forms part of aresearch project funded by the IST Programme of the Commission
of the European Communities as project number |ST-2001-33052.

For further information about WonderWeb, please contact the project co-ordinator:

lan Horrocks

The Victoria University of Manchester
Department of Computer Science
Kilburn Building

Oxford Road

Manchester M13 9PL

Tel: +44 161 275 6154

Fax: +44 161 275 6236

Email: wonderweb-info@lists.man.ac.uk

Contents

Executive Summary

1

General Information

1.1 Relationshipto KAON
1.2 Obtaining KAON SERVER
1.3 JavaPackage Overview

Starting the server

Deploying components

3.1 Deploymentinaclient
3.2 Manua (Hot) Deployment
3.3 Defining Interceptors
3.4 Association Management

Discovering components
4.1 Theontology
4.2 Component descriptions
4.3 Automatic client-side discovery

4.4 Viewing theregistry’s contents .

Working with client-side surrogates
5.1 KAON Surrogates
511 RemoteK AONConnection
5.1.2 RemoteRDFFactory
Other surrogates

5.2

The Semantic Web Service Connector
6.1 Architecture
6.2 Ontology Mapping

OilEd Demonstr ator

Conclusion

IST Project 2001-33052 Wonder\Web:
Ontology Infrastructure for the Semantic Web

IST Project 2001-33052 Wonder\Web:
Ontology Infrastructure for the Semantic Web

Executive Summary

KAON SERVER can be considered as Application Server for the Semantic Web whose
design and development are based on existing Application Servers. However, we apply
and augment their underlying conceptsfor usein the Semantic Web and integrate semantic
technology within the server itself.

Thisdeliverable describes a Demonstrator (KAON SERVER release 1.0) fromauser’s
point of view. A detailed discussion of the server’sanalysis, requirements, design and im-
plementationisgivenin[12]. A detailed discussion of the contribution to the Middleware
community isgivenin[10].

Part of thiswork has been done in cooperation with partners inside and outside Won-
derWeb. In particular, we are indebted to Marta Sabou, Vrije Universiteit Amsterdam,
The Netherlands, as well as Debbie Richards, MacQuarie University Syndney, Australia,
for their fruitful work on the ontology presented in section 4. Also Sean Bechhofer from
the University of Manchester who maintains the Oil Ed ontology editor and invested great
efforts for the KAON SERVER adaptation.

The new version 1.1 of this deliverable extends 1.0 by the following points:

e OilEd demonstrator (new Section 7)
Semantic Web Service Connector (new Section 6)

Association Management (Section 3.4)

Interceptors (new section 3.3)

Components update registry (section 3.2)

Several bugfixes and general improvements

IST Project 2001-33052 Wonder\Web:
Ontology Infrastructure for the Semantic Web

1 General Information

KAON SERVER can be considered as an Application Server for the Semantic Web (AS-
SW) facilitating reuse of existing software modules, e.g. ontology stores, editors, and
inference engines and, thus, the development and maintenance of comprehensive Seman-
tic Web applications. In [12] we describe analysis, design and implementation in detail,
[10] discusses the contribution for the Middleware community. The following subsec-
tions will document the KAON SERVER Demonstrator (release 1.0) from a user’s point
of view. In particular we will show how to install and start the server (section 2), how to
deploy (3) and discover components (4) and how to work with client-side surrogates (5).
Section 6 talks about the Semantic Web Services Connector that automatically generates
OWL-S descriptions, Section 7 about the OilEd demo. Conclusion and future work are
presented in section 8.

1.1 Relationship to KAON

KAON [5] is an open-source ontology management infrastructure targeted for semantics-
driven business applications. It includes a comprehensive tool suite allowing easy on-
tology management and application. Important focus of KAON is on integrating tra-
ditional technologies for ontology management and application with those used typi-
caly in business applications, such as relational databases. KAON is developed by
the Research Center for Information Technologies (FZI) and the Institute AIFB, both
at the University of Karlsruhe. For a detailed technical description please confer to
http://kaon. semanti cweb. or g aswell asthe KAON Developer’'s Guide [8].

<any dir>

- build

| - kaon_buil d_root

| | - apionrdf

| |-

| - kaon-ext build_root
| | - kaonserver
|

| - kaon

| |- 3rdparty

| | - apionrdf

I | - api proxy

| |- ...

| - kaon-ext

| |- 3rdparty

| | - kaonserver
|

KAON Extensions are a set of software modules that are optional to the KAON tool
suite but rely on it. In contrast to KAON, the modulesin KAON Extensions are digoint,

2

IST Project 2001-33052 Wonder\Web:
Ontology Infrastructure for the Semantic Web

i.e. they do not rely on other modules within the project. However, they al rely at least
on the kaonapi module from the KAON project. Hence, for development, the whole
KAON project isrequired (please cf. [8]). Both projects should be checked out in parallel
resulting afile-structure like follows:

1.2 Obtaining KAON SERVER

KAON SERVER is part of KAON Extensions and works with Sun’s JDK 1.4.1_03 (avail-
able at http://java.sun.conlj2se/). Its source code, as well as released binaries
can be obtained from ht t p: / / sour cef or ge. net / pr oj ect s/ kaon- ext , including pub-
lic CV'S access.

The “kaonserver” module in KAON Extensions provides its own build.xml in the
corresponding directory (it includes common.xml where some global constants are de-
fined). The build file references some libraries from <any dir>/kaon/3rdparty and from
<any dir>/build/ kaon_build_root/<module-dir>/lib. The remaining libraries are stored
in <any dir>/kaon-ext/3rdparty.

A successful build results in a corresponding directory located at <any dir>/build/-
kaon-ext_build_root/kaonserver. The modulefeatures a source and binary distribution zip-
archive, javadocs, a copy of each required library and generated scripts. It isnot required
to have the KAON project checked out when working with the binary distribution of the
KAON SERVER.

1.3 Java Package Overview

The Java packages of the kaonserver modul e are organized akin to the conceptual architec-
ture depicted in [12] (also cf. Figure 6), i.e. they are divided in components, management,
connectors and client where the | atter holds all the client-side surrogates. We will explain
the packages below:

edu.unika.aifb.kaon.server Only holds the interface Constants which, as the name sug-
gests, contains all the constants required throughout the project. If a class needs
some constants, it just has to implement the interface. Also, thereisthe class Start-
Server that eventually becomes the start script.

edu.unika.aifb.kaon.server.client Containsall the client-side surrogatesfor components
written so far (hence the package name*“client”). All surrogates are labelled Remote-
<origina class name or component name>. See section 5 for a description of the
surrogates.

edu.unika.aifb.kaon.connectors Holds all the code of connector MBeans.

edu.unika.aifb.kaon.interceptors All the code related to Interceptors. an interface of
the same name, an Abstractinterceptor and prototypical Auditinglnterceptor and
Authenticationlnterceptor.

edu.unika.aifb.kaon.management Holds system components that belong to the Man-
agement Core, i.e. the Component Loader as well as Association Management.

3

IST Project 2001-33052 Wonder\Web:
Ontology Infrastructure for the Semantic Web

The Registry isa KAON ontology store, situated in the components package. The
Microkernel is implemented by JBoss IMX (Java Management Implementations)
MBeanServer, located in javax.management in jboss-jmx.jar.

edu.unika.aifb.kaon.components Containsclassesand corresponding MBean interfaces
for al functional and proxy components written so far.

edu.unika.aifb.kaon.server.test Here one can find al the classesfor test purposes. Note
that those are not maintained and might be outdated. However, the devel oper might
find ideas for his or her own client code.

2 Startingthe server

In package edu.unika.aifb.kaon.server, the Java class StartServer bootstraps the server
with all connectors and the management core’s system components. In the build or bi-
nary release, there is a script automatically starting this class in <any dir>/build/kaon-
ext_build_root/kaonserver/release/bin/startserver.bat. You are required to start it from the
release/bin directory or a correct configuration of the KAON SERVER is not ensured.
Note that this script includes the invocation of the RMI registry which is required for the
RMI connector. If you don’t use the script but start the class Prototype manually, you
have to start the RMI registry with a proper classpath set to KAON SERVER'’s classes.
The following enumeration lists what happens during start-up:

1. Creation of the Management Core

e Creation of the Kernéel
Deployment of the Registry

Deployment of the Component L oader

Deployment of the Association Management

2. Creation of the Connectors

Deployment of the HTTP Adaptor GUI

e Deployment of the RMI Connector

e Deployment of the SOAP Connector

e Deployment of the Semantic Web Services Connector
3. Descriptions

An ontological description of every system component (situated in /resources/-
descriptions) isincluded in the registry (cf. 4).

4. Paths
Paths are being set for the component loader’s hot deployment directory and some
other configurations. It isimportant to have the working directory set to /release/bin
when calling the startserver.bat script.

IST Project 2001-33052 Wonder\Web:
Ontology Infrastructure for the Semantic Web

After asuccessful start-up, the user may interact manually with the server by working
with the management console (http://1 ocal host: 8082) or view the contents of the
registryt. For thelatter, KAON OlModeller [8] isrequired (cf. also section 4). Component
deployment and component discovery are discussed in the following sections.

RMI
S0AP

Functional Component

KAONOntologyStore
KAONRDF Store
Queue

Proxy Component

DIG Reasoner
Ontobroker
Sesame

System Component
Component Loader
Registry

University of Karlsruhe o
Institute AIFB .
=
=
1 <

IE RVE R Application Server for the Semanfic Web

—
Components
To Kemel Administration
Connector

Figure 1. Screenshot of HTTP Connector.

3 Deploying components

There are two ways of deploying a component to the server’s Microkernel. Typically, a
developer realizes deployment by explicit Java codein hisor her client. Another optionis
to manually deploy a component by copying a description file into a specified hot deploy-
ment directory. Both possibilities are supported by the component loader and discussed

in the following subsections.

3.1 Deployment in aclient

Normally, aJMX developer would hard-code deployment in his or her code. Like shown
in the example below, a new javax.management.ObjectName has to be created and given
as argument to registerM Bean together with the actual MBean. The MBean in our caseis
a Sesame RDF store. Note that this method of deployment does whether enter the MBean

in the registry nor apply the association management.

INote that the console is an evaluation version only, i.e. functionality is restricted.

IST Project 2001-33052 Wonder\Web:
Ontology Infrastructure for the Semantic Web

bj ect Nane nane =
new Qbj ect Name(" Functional Component: nane=SesaneStore");
server.registerMean(sesane, nane);

Thus, we developed the component loader system component for convenience. A
client application has to create a surrogate for it in afirst step. After that, the deploy()
method takes an ontological description of the component which isautomatically inserted
into the registry. Also, associations to other components are detected and automatically
applied by the Association Management System Component (cf. 3.4).

Properties props = new Properties();
props. put (CONNECTION, RM) ;
props. put (RM _HOST, "I ocal host");
props. put (RM _PORT, "1099");
props. put (RM _NAME, "/j mx/ RM Connect or ") ;
Rerot eConponent Loader rcl
= new Renot eConponent Loader (props) ;
rcl.deploy("file:///SesameConponent. kaon");

The exemplary description fil e:/// SesameConponent . kaon may look like below
and conforms to the registry’s ontology (cf. 4). In essence, a component’s description is
made up of instances.

<sof t war enodul e: Sof t war eMbdul e rdf: | D="Sesane" >
<sof t war enodul e: presents rdf:resource="#SesameProfile"/>
<sof t war enodul e: i npl ement s rdf: resour ce="#SesaneConponent "/ >
</ sof t war enodul e: Sof t war eModul e>

<semant i cwebprofile: SesameStore rdf: | D="SesameProfile">
<sof t war enodul e: present edBy rdf: resour ce="#Sesane"/>
<semant i cwebprofil e: queryLanguage>SeRQL</ semant i cwebprofi | e: queryLanguage>
<semant i cwebprofi| e: supportsTransacti ons>No</ semanti cwebprofi | e: supportsTransacti ons>
<semant i cwebprof i | e: persi st ent >No</ semant i cwebpr of i | e: persi stent >
<semant i cwebprofi | e: persi st ent >None</ semant i cwebpr of i | e: persi st ent >
</ semant i cwebprofi | e: SesameSt or e>

<i npl enent at i on: ProxyConponent rdf: | D="SesanmeConponent ">
<sof t war enodul e: i npl ement edBy rdf: resource="#Sesame"/>
<i npl enent ati on: hasCodeDet ai | s rdf: resour ce="#SesameCodeDet ai | s"/>
</'i mpl ement at i on: Pr oxyConponent >

<i npl enent ati on: CodeDet ai | s rdf: | D="SesameCodeDet ai | s" >
<i npl enent ati on: name>Pr oxy Conponent: nane=Sesane</ i npl enent at i on: nane>
<i npl enent at i on: code>edu. uni ka. ai f b. kaon. server. conponent s. SesaneConponent </ i npl enent at i on: code>
<i npl enent ati on: versi on>1. 0</i npl enent ati on: versi on>

</i mpl ement ati on: CodeDet ai | s>

3.2 Manual (Hot) Deployment

The component loader offers the possibility to define a directory which is periodically
being scanned for new description files. This directory can be set aso via the manage-
ment console. Files with extensions “.kaon”, “.xml” and “.rdf” are regarded. Such files

IST Project 2001-33052 Wonder\Web:
Ontology Infrastructure for the Semantic Web

have to contain avalid KAON description according to the management ontology and at
least one instance of the Component concept (or subconcepts thereof) like depicted in the
subsection above. Several component descriptionsin afile are possible, 2

As soon as such a file is copied in the hot deployment directory, it is provided as
argument to the component loader’s deploy method that in turn registers and starts it and
also enters the description in the registry and apply the association management. When a
description file is moved or deleted the respective component(s) are undeployed. The hot
deployment directory is set to kaonserver/resources/hotdeploy as default.

For convenience, we came up with several copy-by-example descriptionsfor all func-
tional componentsavailablesofar. All of them located in kaonserver/resources/descriptions.
They may just be moved to kaonserver/resources/hotdeploy for instant deployment.

In the new version of KAON SERVER, components update some information auto-
matically in the registry. Thiswas necessary to keep information replica consistent both in
form of component class members and attributesin theregistry. To givean example: if the
user opens a new model in RDFComponent (a KAON RDF store) then the corresponding
attribute in the registry is automatically updated.

3.3 Defining Interceptors

Interceptors are software entities that monitor a request and modify them. Typically, as-
pects orthogonal to any application are realized by interceptors, e.g. auditing, security or
transactions. They are a means to realize aspect oriented programming in the context of
JMX. The package edu. uni ka. ai f b. kaon. server. i nt er cept or s definesan interface

I nterceptor,anAbstract | nterceptor aswell asaprototypical Audi ti ngl nt er cept or
and Aut hent i cati onl nterceptor.

nextInterceptor

firstInterceptor
Component

Interceptor

AuditingInterceptor

AuthenticationInterceptor

Figure 2: Conceptual model for defining interceptors

Figure 2 shows how the interceptors are conceptually represented in the ontology
(cf. dso Section 4). Every Component may be deployed with an arbitrary sequence of
Interceptors or specializations thereof. The example below depicts a concrete example
where a KAONRDFStoreComponent is deployed with 3 interceptors.

2|nstead of the directory, component descriptions can also be loaded from aURL. A user can invokethe
component loader’s deploy method in the management console and provide the URL as string argument.

IST Project 2001-33052 Wonder\Web:
Ontology Infrastructure for the Semantic Web

<i npl enent at i on: Funct i onal Conponent

rdf : | D=" KAONRDFSt or eComponent " >
<sof t war enodul e: i npl ement edBy rdf : resour ce=" #KAONRDFSt or e"/ >
<i npl enent ati on: hasCodeDet ai | s rdf: resour ce="#KAONRDFSt or eCodeDet ai | s"/ >
<inplenmentation:firstinterceptor rdf:resource="#Interceptorl"/>

</impl ement ati on: Functi onal Conponent >

<i npl enentation: Auditingl nterceptor rdf:1D="Interceptorl">
<inpl enentation:|ogFile>c:\test.log</inplementation:|ogFile>
<i npl enentati on: nextInterceptor rdf:resource="#nterceptor2"/>
</inmpl ementation: Audi tingl nterceptor>

<inpl enentation: Securitylnterceptor rdf:|1D="Interceptor2">
<i npl enentati on: nextInterceptor rdf:resource="#nterceptor3"/>
</inpl ementation: Securitylnterceptor>

<inpl enentation: Auditingl nterceptor rdf:1D="Interceptor3">
<inpl enentation:|ogFile>c:\test2.1o0g</inplenentation:|ogFile>
</impl ement ati on: Audi ti ngl nterceptor>

The Component Loader detects such descriptions and constructs a proxy around the
actual MBean by meansof j ava. | ang. ref | ecti on wherethel nt er cept or implemen-
tations play the role of invocation handlers containing the MBean. The preferred syntax
for components' names with interceptors is “Functional Component:name=Sesame, in-
terceptor=auditing”.

The Aut henti cati onl nterceptor iskept very simple just to give a proof of con-
cept. The provider deploys a component with such an interceptor along user and pass-
word. Surrogates are expected to transmit user and password with every invocation as last
two arguments (currently only RemoteSesame supportsthis). If authenticationisvalid the
interceptor removes user and password from the argument list and callsthe actual method.

This approach is suboptimal as getAttribute and setAttribute methods cannot be ex-
tended by user and password in the arglist. Also the management console is actually not
allowed to perform invocationsin thisway. Another drawback of thisapproachisthat user
and password are written in the registry. The deployer specifies both in the deployment
descriptor which is entered in the registry.

3.4 Association Management

Descriptions of components may feature ontological associations between components,
e.g. dependsOn, receivingEventsFrom, preventUnloading etc. The Association Manage-
ment System Component isthereto put such associationsinto action. It mainly cooperates
with the Component Loader and the Registry. Regarding dependenciesit plays a similar
roleto org.jboss.system.ServiceController in the JBoss Application Server. However, As-
sociation Management subsumes its functionality asit isthere to manage also other kinds
of associations and applies reasoning with the Registry.

The protocol for dependencies takes another approach than in JBoss. JBoss alows
dependencies only between " Services’” - we here alow dependencies between any kind
of component. Hence, the protocol islooser. We do not define alifecycle for MBeanslike
in JBoss. Instead, a component aways is deployed, even though it is dependent on (not

8

IST Project 2001-33052 Wonder\Web:
Ontology Infrastructure for the Semantic Web

yet deployed) components. Only unloading of componentsis forbidden when they arein
the dependency graph.
Protocol for deployment:

1. Component Loader (CL) enters description in registry

2. CL calls operationalizeAssociations at A ssociationManagement (AM)
3. AM queries registry for associations (dependsOn, etc.)

4. AM reactsto those, e.g. by remembering the component name

Protocol for undeployment:

1. User/CL attempts to undeploy a component
2. before CL deletes contents from registry and undeploysit asks AM
3. Are there dependencies on the particular component?

4. If yes, exception is thrown; if no, undeployment is allowed

In v1.00, KAON SERVER is only able to operationalize “dependsOn”. One may
define the association in a description file as follows. The example below expresses that
a KAON ontology store relies on a KAON RDF store. Providing this description to the
Component Loader does not require any more actions from the client/devel oper.

<i npl enent ati on: Functi onal Conponent rdf : | D="KAONConponent " >

<sof t war enodul e: i npl ement edBy rdf : r esour ce="#KAONOnt ol ogy St ore"/ >

<i npl enent ati on: hasCodeDet ai | s rdf : resour ce="#KAONOnt ol ogy St or eCodeDet ai | s"/ >

<i npl enent ati on: dependsOn rdf:resource="file:/c:/descriptions/ KAONRDFComponent . kaon#KAONRDFConponent "/ >
</impl ement ati on: Functi onal Conponent >

The drawback of this approach is that the identifying URI of the corresponding Com-
ponent instance has to be known in advance. In most cases a client would query the
registry at runtime for this URI and use the A ssociation Management’s surrogate to apply
the dependency.

Map paramet er s=new HashMap();
par amet ers. put (

edu. uni ka. ai f b. kaon. server. cli ent. Renot eKAONConnect i on. SERVER_URI,
"nbean: // RM @ ocal host : 1099/ j mx/ RM Connect or/ Syst enf20Conponent ?nane=Regi stry"
):
Renpt eRegi stry mregistry = new Renpt eRegi stry(parameters);
Renot eAssoci at i onManagenent m am = new Renot eAssoci at i onManagenent (par anet ers);

m am addDependency(
m regi stry. get Conponent URL(" Functi onal Conponent: name=KAONOnt oSt ore"),
m regi stry. get Conponent URL("Funct i onal Conponent : name=KAONRDFSt or ")

);

m am r el easeAssoci ations("Functional Conponent: name=KAONOnt oSt ore");

IST Project 2001-33052 Wonder\Web:
Ontology Infrastructure for the Semantic Web

Calling rel easeA ssoci ations on the A ssoci ation Management will allow undepl oyment
of the depending components again. If the user tries to undeploy a depending component
by moving adescription file out of the hotdeploy directory, thefileismoved. However, the
component remains deployed, the descriptions remainsin the registry and the association
remains. One has to invoke releaseAssociation on Association Management, unregister
on RemoteM BeanServer and deleteDescription on Registry.

4 Discovering components

The registry, which is a ssmple ontology store, and its ontology play a centra role in
KAON SERVER. We are using the apionrdf implementation of the KAON API, i.e. the
main memory transient version, as ontology store. Components can be described accord-
ing to the management ontology and those descriptions can be given as argument to the
Component Loader which in turn enters them in the registry. A client may discover a
component it isin need of by querying the registry. All of that functionality is described
in this section.

4.1 Theontology

KAON SERVER uses amanagement ontology as detailed in[9, 11, 10]. It takesasimilar
design to OWL-S [2] but has been adapted to describe software modules instead of web
services. Figure 3 shows the ontology design in contrast to OWL-S.

Generality
A C > (sub)ontology

—> uses ontology

@ —V API Description 4—

A A A A

/ ‘
o
Semantic Web
Profiles
P Type of

Web-services Software Modules Software Entiity

uondridsaq
onUPUIIS

Intermediate

uondriasa(q
211o0JUAG

Semantic Web
API Descriptior

Domain

Figure 3: KAON SERVER’s ontology

Each of the sub-ontologies is modelled in the KAON language and shipped with the
distribution. Theglobal logical namespace always startswithht t p: / / kaon. semant i cweb.
or g/ kaon/ server. Thelogical URI of theregistry isht t p: / / kaon. senant i cweb. or g/
kaon/ server/regi stry which isbasicaly an empty KAON OIModel that includes the
http://kaon. semanti cweb. or g/ kaon/ server/regi stryschene. The latter includes

10

IST Project 2001-33052 Wonder\Web:
Ontology Infrastructure for the Semantic Web

all the subontologieslisted below. Thisinclusion structure allowsusto include component
descriptions at run-time more easily. PhysicalURIs are usually logicalURI + * .kaon”.

Software Module /resour ces/ ont ol ogy/ sof t war emodul e. kaon

Profile /resources/ ont ol ogy/ profile. kaon

API Description /resources/ ont ol ogy/ api descri ption. kaon

IDL Grounding /resources/ontol ogy/i dl groundi ng. kaon
Implementation /resour ces/ ont ol ogy/i npl enent ati on. kaon

IDL /resources/ontology/idl.kaon

Semantic Web Profile /resour ces/ ont ol ogy/ semant i cwebpr ofi | e. kaon

Semantic Web API Description /resour ces/ ont ol ogy/ semant i cwebapi descri ption.
kaon

4.2 Component descriptions

The component loader (cf. 3) offersthe possibility to deploy acomponent by means of an
ontological description. Such adescription basically features oneinstance of the Software
Module concept. Technically, this description is stored in a KAON file that includes the
registry. Below, we list an exemplary description for a Description Logic reasoner:

<?xm version="1.0" encoding="UTF-8 ?>

<! DOCTYPE rdf : RDF [
<IENTITY rdf "http://ww. w3. org/ 1999/ 02/ 22- r df - synt ax- ns#' >
<IENTITY registry 'http://kaon. semanticweb. or g/ kaon/ server/regi stryscheme# >
<IENTI TY sof t warenodul e " http://kaon. semanti cweb. or g/ kaon/ server/ sof t war enodul e#' >
<IENTITY profile "http://kaon. semanti cweb. or g/ kaon/ server/profile# >
<IENTITY api description "http://kaon.semanticweb. org/ kaon/ server/ api description# >
<IENTITY idlgrounding 'http://kaon. semanticweb. or g/ kaon/ server/idl groundi ng#' >
<IENTITY idl ’http://kaon.semanticweb. org/ kaon/server/idl # >
<IENTITY inpl enentation 'http://kaon. semanticweb. or g/ kaon/ server/inpl enent ati on#' >
<IENTITY semanticwebprofile 'http://kaon. semanticweb. org/ kaon/ server/semanti cwebprofile# >
<IENTITY semanti cwebapi description 'http://kaon.semanticweb. or g/ kaon/ server/semanti cwebapi descri ption#' >
1>

<?i ncl ude-r df
| ogi cal URI ="http://kaon. semant i cweb. or g/ kaon/ server/regi stryschene"
physi cal URI ="fil e:/ C:/ Dev/ KAON ext/ kaonser ver/resour ces/ ont ol ogi es/ regi st ryschene. kaon" 7>

<rdf : RDF
xm ns="®i stry;"
xm ns: rdf =" &rdf ;"
xm ns: sof t war enodul e=" &sof t war enodul e; "
xmns: profile="&profile;"
xm ns: api descri pti on="&api descri ption;"
xm ns: i dl groundi ng="4& dl groundi ng; "
xmns:id ="&dl;"
xm ns: i mpl ement ati on="&i npl enent ati on; "
xm ns: semant i cwebprof i | e="&semant i cwebprofile;"
xni ns: semant i cwebapi descri ption="&senmanti cwebapi descri ption;"

11

IST Project 2001-33052 Wonder\Web:
Ontology Infrastructure for the Semantic Web

The header of each description always starts with the definition and abbreviation of
the required sub-ontologies’ namespaces (as listed above) and the inclusion of registry-
scheme.

sof t war emodul e: Sof t war eMbdul e rdf: | D="DI GReasoner " >
<sof t war enodul e: presents rdf:resource="#Dl GReasonerProfile"/>
<sof t war enodul e: i npl ement s rdf : resour ce="#DI GReasoner Conponent "/ >
</ sof t war emodul e: Sof t war eMbdul e>

<semant i cwebprofil e: Dl GReasoner rdf: | D="Dl GReasonerProfile">
<sof t war enodul e: present edBy rdf: resour ce="#Dl GReasoner"/>
<semant i cwebprofil e: | anguage>SH Q</ semant i cwebpr of i | e: | anguage>
<semant i cwebprof i | e: act ual Reasoner >FaCT</ semant i cwebpr of i | e: act ual Reasoner >
<semant i cwebpr of i | e: hol dsOnt ol ogy>none</ semant i cwebpr of i | e: hol dsOnt ol ogy>
<semanti cwebprofile:url>http://xyz</semanticwebprofile:url>

</ semanti cwebprofi | e: DI GReasoner >

<i npl enent ati on: ProxyConponent rdf: | D="DI GReasoner Conponent ">
<sof t war enodul e: i npl enent edBy rdf: resour ce="#Dl GReasoner"/ >
<i npl enent ati on: hasCodeDet ai | s rdf: resour ce="#DI GReasoner CodeDet ai | s"/>
</i mpl ement ati on: ProxyConponent >

Central to each description is an instance of SoftwareM odule which presents a Profile
(in this case a specialization thereof located in the Semantic Web Profiles sub-ontology)
and implements a SoftwareM odul el mplementation (which is again specialized in this ex-
ample). It isimportant to include the inverse properties presentedBy and implementedBy
for querying.
<i npl ement ati on: CodeDet ai | s rdf: | D="DI GReasoner CodeDet ai | s" >

<i npl enent at i on: nane>Pr oxy Conponent : nane=DI G Reasoner </ i npl enent at i on: name>

<i npl enent at i on: code>edu. uni ka. ai f b. kaon. server. conponent s. Dl GConponent </ i npl enent at i on: code>

<i npl enent ati on: ver si on>1. 0</ i npl enent ati on: ver si on>
</inpl ement ati on: CodeDet ai | s>

</ rdf: RDF>

The CodeDetails belong to the SoftwareM odulelmplementation and are basically a
conceptualization of the IMX MLET tags. Every MBean is attributed by —code—
(the class name), —object— (a filename that contains a serialization of the MBean),
—archive— (alist of .jar files), —codebase—, —name— (the MBean’'s ID), —version—
and —arglist— (parameters for the MBean's constructor). All of them became attributes
of CodeDetails with —archive— pointing to an instance of the newly introduced Archive
concept. The latter features a transitive association requiresArchive that hel ps the compo-
nent loader in computing all the necessary libraries.

4.3 Automatic client-side discovery

The registry’s surrogate (RemoteRegistry) basically wraps a RemoteK AONConnection
(cf. section 5.1.1) to the main-memory based KAON API component deployed to the
kernel and offers some convenience methods for interaction.

Typicaly aclient is interested in components of a certain type, e.g. ones that con-
form to the DIG? interface. The getComponentl Ds() method provides this functionality.

3Description Logics Implementation group. Currently, FaCT and Racer conform to this interface.

12

IST Project 2001-33052 Wonder\Web:
Ontology Infrastructure for the Semantic Web

For convenience, only the name of the desired concept (as defined in the Semantic Web
Profiles sub-ontology) has to be given as argument. After retrieving the component 1Ds
in a Collection, the client might choose which one to use by having a closer ook at their
profiles. A component ID is fed into getProfilelnfo() for this purpose. The client might
display them to the user or choose automatically according to some criteria. A surrogate
can now be constructed by providing it the component ID. Below we give an example for
discovering DIG Reasoners®.

[/ Create Surrogate RenoteRegistry

Map paranet ers=new HashMap(); paramneters. put(SERVER _URI,
"nbean: // RM @ ocal host : 1099/ j mx/ RM Connect or/

Syst ent20Conponent ?nane=Regi stry");

Renot eRegi stry registry = new Renot eRegi stry(paraneters);

/] Get Conmponent |IDs of all deployed Dl GReasoners
Col lection ids = registry.get Conponent | Ds(" Dl GReasoner") ;
if (ids.isEnpty()) {
Systemout.println("No D GReasoners depl oyed");
} else {
Iterator test = ids.iterator();
while (test.hasNext()) {
String conponentid = (String)test.next();
/I'something |ike "Proxy Conponent:nanme=Fact"
[1Listing properties for conponentid for user to choose
Ilget profile properties of conponent
/'l (representationLanguage, ontology etc.)
HashMap props = registry. getProfilel nfo(conmponentid);
for (Iterator tenp=props.entrySet().iterator();tenp. hasNext();) {
Map. Entry nme = (Map. Entry) tenp.next();
Systemout.printIn("\t\tProperty:"+(String)mne.getKey()+",
Val ue: "+(String)me. get Val ue());

}
}

/I choose component by graphical user interface or automatically
String choice = ...

//construct surrogate
Renot eReasoner proxy = new Renot eReasoner (server, choice);

4.4 Viewingtheregistry’'scontents

One can use KAON's OIModeler graphical user interface to browse the registry’s cur-
rent contents (see Figure 4). In the “Open OIModel” diaog choose “Other” and enter
as physicalURI (the query part is the UTF-8 encoded originaphysicalURI, see section
5.1.1):

4cf. edu.unika.aifb.kaon.server.test.Discovery Test

13

IST Project 2001-33052 Wonder\Web:
Ontology Infrastructure for the Semantic Web

mbean: / /1 ocal host: 1099?f i | e¥BAY2FIR2F<pat h>%2F\ r esour ces%2F\ ont ol ogi es%
2Fregi stry. kaon

Additionally, the connection parameters SERVER_URI and KAON_CONNECTION
must be provided as discussed in section 5.1.1. Note that kaonserver-client.jar has to be
in OIModeller’s class path.

Every descriptionfilethat is provided to the component |oader’ s depl oy method will be
included by / r esour ces/ ont ol ogi es/ regi stry. kaon at runtime. It will be excluded
when the component is undeployed.

0, tolor - mik :RMIg@localt TM=RMIC tor/System®:20Comy 21 Registry? i . g 0F [E
Zoom v | [4] [] [¥] Included Ol-models

[RITLIJEN)

e

[r]

@ file:/C:/Devibuild/kaon-ext_build_rootkaons

(xH:HC} i @ file/C/Devibuild/kaon-esd_build_rootkaons
H-H:} D . R ! ! e

_ m || @ fileyCDevhuildikaon-ex_build_roatkaon
deletails C=H=HE] L : @ filexfCyDevibuildikaon-ext_build_rootkaong |

-

it il

g e
s ol
kaon:Root E1 O, < Search |

(xH«H]
Parameter
mao [ararneter
Parameter
{aH=Hxl

(rHH] IrHH] H:H1] H:H]
kaon:Language |InputGrounding ﬂﬁtﬂ MethodGrounding
=H= 1] GHeHA EHEHE

Execute KAON query - | | & start |

© . A Marne
Superconcepts Subconcepts Lexicon .
; " F i " =
hitp:kaon sermanticweb.org] || &) ouputcrounding ||| Tome | Langu...| Value | §§
(@ Parameter ;
(@ Parameter
© ServiceParameter | —
(@ SoftwareModule
(©) SoftwareModuleGroun |
4 |3:1 1:1:1| | » 4 ||3:3::1:1:1:1:1:1| | v
Properties From Concept Properties To Concept Concept Instances :
|Prope. [Minir. [Mz | Propertyrame | |[EntityMa..| | value | -
® http:ifkaon.semantic... G*@htlp... H
Cliphoard X
(@) Subconcepts of Root <

Figure 4. Browsing the registry

5 Working with client-side surrogates

As introduced in [12], surrogates are client-side objects that reveal the API of particular
components residing within the KAON SERVER and relay communication to them (sim-
ilar to stubsin CORBA). The idea of a surrogate is to relieve the developer of tunneling
al method-calls to an MBean via MBeanServer.invoke(). Instead, the developer should
be put in a position equal to working with the software module directly. All surrogates
are located in edu.unika.aifb.kaon.server.client, they are labelled Remote<original class
name or component name>.

14

IST Project 2001-33052 Wonder\Web:
Ontology Infrastructure for the Semantic Web

Surrogates work with connector components which have to be provided to the con-
structor in the form of java.util.properties. The following table gives an overview of
possible connectors and their properties (all of them defined in edu.unika.aifb.kaon.-
server.Constants). At the moment, there are three connectors. alocal connector, a SOAP
and a RMI connector. Besides the connection parameters, every surrogate has to be pro-
vided the name of an MBean. This name istypically discovered by querying the registry

(cf. section 4).
CONNECTION | Parameters Possible Values
LOCAL No other parametersrequired | -
SOAP SOAP_HOST Hostname of SOAP connector,
default:local host
SOAP_PORT Portnumber of SOAP connector,
i.e. KAON SERVER’s host,
default:8085
SOAP_NAME Name of the WSDL -description,
€.g. soapconnector
SOAP_PATH Path of the WSDL -description,
e.g. jmx
RMI RMI_HOST Hostname of RMI connector,
i.e. KAON SERVER’s host,
default:local host
RMI_NAME Name of the RMI connector,
default:jmx/RMIConnector
RMI_PORT Portnumber of RMI host,

default: 1099

We already gave an example of constructing a surrogate using the RMI connector in
section 3. Additionally, we will demonstrate how to construct the properties required for
the surrogate “ RemoteClient” which relays communication to the Ontobroker [3] proxy
component [13] by using a SOAP connector. Its constructor takes the property list as well
as the name of the MBean as argument. After instantiation the client is able to work with
Ontobroker by using the surrogate object.

Properties props = new Properties();
props. put (CONNECTI ON, SOAP) ;
props. put (TYPE, MGWI);

props. put (SOAP_PORT, "8085");

(

props. put (SOAP_HOST, "l ocal host");
(
(

props. put (SOAP_PATH, "jnmx");

props. put (SOAP_NAME, "soapconnector");
Renot eCl i ent ont obr oker =

new Renot e i ent (props, "Proxy Conponent: name=0nt obr oker");

15

IST Project 2001-33052 Wonder\Web:
Ontology Infrastructure for the Semantic Web

Note, that there also is a surrogate for the MBeanServer itself to interact directly with
the kernel. Typically, al the other surrogates, like RemoteClient above, use RemoteM-
BeanServer to translate their calls to the MBeanServer’s invoke method.

5.1 KAON Surrogates

KAON APl and KAON RDF API implementations have been made deployable and sur-
rogates have been developed, too. The surrogates themselves implement the KAON AP
and KAON RDF API respectively and relay communicationsto KAON APl and KAON
RDF API implementations deployed to the KAON SERVER. Thus, there is an additional
indirection with KAON SERVER in between. Relevant prefix for the APl implementa
tions' physicaURIsis“mbean://”

5.1.1 RemoteK AONConnection

The RemoteK AON Connection implementsa KAONConnection for KAON SERVER. On
the server side, the actual KAONConnection is deployed as an MBean. PhysicalURIsfor
thiskind of connection take the following syntax:

mbean://HOST ?originalphysical URI

The scheme mbean isimportant for RemoteK AONConnection to determine whether it
is capable of handling thisphysical URI. Host isonly used as a dummy and does not carry
information. The parameter for the remote connection are encoded in the SERVERyRI.
The original physicalURI is the physicalURI of the KAONConnection wrapped by the
MBean (file, http, jboss, direct etc.). Note, that the original physicalU Rl hasto be UTF-8
encoded. Thisisachieved by the following code

new URI ("nbean: //<host>[:<port>]" +
URLEncoder . encode(<ori gi nal - physi cal - URI > , "UTF-8"));

RemoteK AONConnection needs a SERVER_URI as additional parameter that holds
the information needed to connect to the MBeanServer. It takes the following syntax:

mbean://CONNECTION@HOST:PORT/PATH/IMX-DOMAIN?IMX-ATTR-LIST

where

CONNECTION iseither LOCAL, RMI or SOAP
HOST iseither localhost,RMI_HOST or SOAP_HOST
PORT iseither O,RMI_PORT or SOAP_PORT

16

IST Project 2001-33052 Wonder\Web:
Ontology Infrastructure for the Semantic Web

PATH iseither RMI_NAME or SOAP.NAME
JMX-DOMAIN isthe domain of the MBean

JMX-ATTR-LIST are the attributes of the MBean’'s IM X name

For example, atypical SERVERy RI with SOAP access would look like the following
mbean://SOA P@I ocal host: 8085/j mx/soapconnector/exampl e?Functional %20Component-
=KAONComponentl. In addition to the SERVER.URI, the KAON_CONNECTION pa-
rameter must be set to edu.unika.ai f b.kaon.server.client. RemoteK AONConnection.
5.1.2 RemoteRDFFactory

Animplementation of the RDF factory for remote modelsresiding inthe KAON SERVER.
Relevant prefix for thiskind of physicalURI is“mbean”. All information required to ad-
dress the remote MBeanServer is encoded in the physical URI:

mbean://CONNECTION@HOST:PORT/PATH/IMX-DOMAIN?IMX-ATTR-LIST

where

CONNECTION iseither LOCAL, RMI or SOAP
HOST iseither localhost,RMI_HOST or SOAP_HOST
PORT iseither 0,RMI_PORT or SOAP_PORT

PATH iseither RMI_NAME or SOAP_NAME
JMX-DOMAIN isthe domain of the MBean

JMX-ATTR-LIST are the attributes of the MBean’'s IM X name

For example, atypical physica URI with SOAP access would look like the following
mbean://SOA P@I ocal host: 8085/j mx/soapconnector/exampl e?Functional %20Component-
=RDFComponent1

Within RemoteRDFFactory’s methods, this URI would be parsed into a valid IMX-
name “ Functional Component:name=RDFComponent1” to address the MBean within the
server. All the other information is required to instantiate the SOAPConnector. Before
using this surrogate, the factory should be registered with the RDFManager:

RDFManager . regi st er Fact ory("edu. uni ka. ai f b. kaon.
server.client.Renot eRDFFact ory");

17

IST Project 2001-33052 Wonder\Web:
Ontology Infrastructure for the Semantic Web

5.2 Other surrogates

Within the current KAON SERVER distribution there are several other surrogates that
mostly coincide with the adaptation of existing software modules. Most of them are
described in other WonderWeb deliverables:

RemoteRDFGeneric This surrogate features the most basic methods that are common
to RDF stores. It can be used in conjunction with the KAON RDF API Component
and the Sesame Component.

RemoteSesame Surrogate for the Sesame RDF store [14]. In version 1.0 this surro-
gate has been updated with regards to security issues. It is now expected that the
provider deploys his SesameComponent to the KAON SERVER with user, pass-
word and server URL already set. Therefore, the surrogate and thus the client do
not have to deal with the credentials except an Authentication Interceptorsisexplic-
itly deployed. It also the only surrogate that is able to work with the prototypical
Authentication interceptor so far.

RemoteReasoner Surrogate for DIG Reasoners[1].

RemoteClient Surrogate for Ontobroker [13].

RemoteRegistry Surrogate for the registry (cf. 4).

RemoteComponentL oader Surrogate for the component loader (cf. 3)
RemoteAssociationM anagement Surrogate for the Association Management (cf. 3.4)

RemoteM BeanServer Surrogate for the kernel, i.e. the MBeanServer.

6 The Semantic Web Service Connector

The Semantic Web Service Connector (SWSConnector) provides a flexible mechanism to
access the methods of any deployed MBean by the SOAP protocol along corresponding
WSDL and OWL-S descriptions.

The connector uses the GLUE® Web Services engine to handle SOAP requesty re-
sponses and the automatic generation of the corresponding WSDL descriptions. While
generating the WSDL with a given interface requires online two lines of code, routing
incoming SOAP reguests to the actual MBean necessitates an indirection. Thisis due to
the fact that every request has to be routed through the MBeanServer. Hence, we had to
come up with a reflection proxy that reveals the MBean's interface and does the corre-
sponding routing. OWL-Sisfinally generated by using the OWL-S API® and additionally
information stemming from the registry.

Shtt p: // waw. webmet hods. com
Sht t p: / / waww. mi ndswap. or g/ 2004/ owl - s/ api /

18

IST Project 2001-33052 Wonder\Web:
Ontology Infrastructure for the Semantic Web

6.1 Architecture

Figure 5 shows the steps that lead to the publishing of a WSDL and OWL-S description.
The SWSConnector and its GLUE SOAP engine are able to publish several MBeans at
once. Also, the connector applies the Association Management, i.e. when an MBean is
published as Semantic Web Service it must not be undeployed.

(2) publish

@ | [
k\\\\:\ /i/////)

(3) generat

. Association
Registry Kernel
. Management
(1) inspect
iAuthentication] iAuthorization‘; ! Auditing } i Other |
~— c -~ E
52 ge| |, % R
g 22||8¢ %8
0O O S O = 8_ S5
c a cee c a o I8
S g S € € £
L o L o Q S
O (@] O

Figure 5: Process of publishing.

The client or user first provides an MBean ID to the publish method together with an
URL path identifier, e.g. “Proxy Component:name=Sesame” and “sws’. In step (1) the
connector inspects the specified MBean and provides an invocation handler to its SOAP
engine. The invocation handler translates every incoming request into respective calls
to the MBeanServer which are routed to the specified MBean. The WSDL descriptionis
automatically derived by using Javareflection and published (2). Next, the OWL-SAPI is
used to generate a ssmple OWL-S description derived from the WSDL description. That
comprises the grounding in particular, but also basic profile and process information (3).
Additional information is taken from the MBean's description in the registry. Although
that could enrich the OWL-S description significantly, we encountered several difficulties
that are due to ontology mapping (see next subsection).

Thewhole processresultsinht t p: // | ocal host : 8090/ sws/ sesane asthe Web Ser-
vice sURI withhttp://1 ocal host: 8090/ sws/ sesane. wsdl andhttp://| ocal host:
8090/ sws/ sesamne. owl s being the URIs of the WSDL and OWL-S description, respec-
tively.

19

IST Project 2001-33052 Wonder\Web:
Ontology Infrastructure for the Semantic Web

6.2 Ontology Mapping

First of al, every method of an MBean becomes a separate service with profile, process
model (with one AtomicProcess that represents the method) and grounding. Regarding
the mapping from the registry’sinformation to the OWL-S description, the SWS Connec-
tor behaves as follows:

e “serviceName’ inregistry is copied
e “textDescription” is copied, if not existing, default description is generated

e “Actor” instance with corresponding attributes (“webURL”, “title”, “fax”, “email”,
“phone”, “physicalAddress’) is copied and instantiated only once but referenced by
each service.

e “serviceParameters’ (i.e. “representationLanguage”, “model”, “serverURL” etc.)
are copied. A new instance is created and referenced by all services with * sParam-
eter” pointing the original parameter’s value and “ serviceParameterName” getting
the name of the property as value. Thus, the subproperty-relationship islost.

Further information could be leveraged. However, it would require cumbersome map-
ping of ontological information at run-time. As long as there is no ontology mapping
language (such as XSLT for XML) the mapping would have to be hard-coded. In our
opinion, this is a clear use-case for applying a foundation ontology. Both ontologies
would have to be aligned to a common “roof” to facilitate the reuse of component and
service descriptions. Below we list information that islost due to that problem:

e Semantic Web Profile: In KAON SERVER’s ontology we subclass Profileto “RDF-
Store”, “OntologyStore”, “Reasoner” etc. with specified ServiceParameters. Such
information could be used in the OWL-S profile al so.

e Semantic Web API Description: components' APIsalong their methods and param-
eters are described in the registry. We could reuse such information in the process
model to further specify processes, aswell as their inputs and outputs.

7 OilEd Demonstrator

The OilEd demonstration shows how KAON SERVER can be used to facilitate the de-
velopment of Semantic Web applications. OilEd is both a DAML+OIL and OWL ontol-
ogy editor. Instead of loading a saving an ontology from afile, this version connects to
the KAON SERVER, queries the registry for available RDF stores, |ets the user choose
one and |loads/saves the contents from/into that store. Currently KAON RDF stores and
Sesame are supported, others are possible. In a similar fashion, OilEd makes use of de-
ployed reasoners rather than instantiating alocal reasoner for every classification. Thus,
we increase flexibility and reuse towards a programming in the large (aka megaprogram-
ming) which is typically required for Semantic Web applications. Any store or reasoner
can be deployed or undeployed at runtime.

20

IST Project 2001-33052 Wonder\Web:
Ontology Infrastructure for the Semantic Web

OllEd

Generic RDF surrogate Reasoner surrogate

C""'“F‘Dﬂmu
Loags,

Regisiry,

Figure 6: OilEd as a client acting upon KAON SERVER.

Like depicted in Figure 6, OIlEd works with both a generic RDF surrogate and a
generic reasoner surrogate. Thefirst isable to relay communication to KAON RDF stores
and Sesame. The latter is able to talk to FaCT and Racer. At run time, OilEd queries the
registry for deployed RDF store and reasoners, respectively. Subsumption reasoning is
automatically applied and the result (in the form of component I1Ds) returned. The user
may choose one of them and may view their according metadata.

Note that the loading and saving only works with OWL-DL ontologies, i.e. RDF
serializations thereof. The ontologies must validate according to the OWL Validator as
it is used within OilEd itself. When loading and saving across different stores one might
encounter problems which are due to the different XML/RDF parsers used in OilEd and
in the stores. On the one hand, this clearly hinders interoperability. On the other hand,
such a situation could be overcome by writing a flexible interceptor deployed on top of
every RDF store. It would monitor source and destination of XML/RDF streams and
could reparse and reserialize to circumvent such problems. The following configuration
has been tested:

21

IST Project 2001-33052 Wonder\Web:
Ontology Infrastructure for the Semantic Web

1. Start KAON SERVER

2. Deploy stores and reasoners
Thisis done by moving the description files (shipped with the OilEd distribution in
/descriptions) into the hotdepl oy directory of KAON SERVER. Othersare possible,
of course.

3. Assumptions

o KAONRDFComponent.kaon
The model and value attributes should be the file-URL for test.owl which is
in the ontologies directory of OilEd. Other OWL-DL ontologies that can be
loaded into KAON RDF stores and OilEd are possible.

e SesameComponent.kaon
Assumes that Sesame is running @ localhost:8080/sesame, and that it ac-
cesses mem-rdf-db. Currently, the OilEd code does not allow to chose repos-
itories. Chosen will be the one that is specified here with hardwired tes-
tuser:opensesame.

e FaCT.kaon
Thedescription file assumesthat FaCT runs on http://localhost:8080/dig. Tom-
cat should be started before the proxy component is deployed. The URL can
be changed, of course.

e Racer.kaon
Like FaCT but on port 8081.

4. Start OIlEd 3.5.7d and load from repository (loading from KAONRDFStore has
been tested successfully)

5. Edit your ontology
Classify the ontology Thisis done by clicking on ”DIG”. OilEd queriesthe KAON
SERVER for available DIG reasoners and lets the user chose.

6. Save your ontology (Sesame has been tested successfully, saving back into KAON
RDF storesyields a parser error)

8 Conclusion

Thisdeliverable presented the KAON SERVER Demonstrator from auser’s point of view.
We discuss analysis, requirements, design and implementation in [12] as well as the con-
tribution to the Middleware community in [10]. The largest part of the design has been
implemented along several adaptations of existing software [1, 13, 14].

In the more distant future several research questions and tasks arise. First of al,
we plan to align KAON SERVER'’s ontology to the DOL CE foundational ontology [6].
The current ontology is based on OWL-S [9] and suffers conceptual ambiguity, lacks
concise axiomatization, is designed too loosely and has a narrow scope. We might be

22

IST Project 2001-33052 Wonder\Web:
Ontology Infrastructure for the Semantic Web

able to overcome those shortcomings by such an alignment. Also, the mapping between
component and service descriptions will be facilitated by that as discussed in section 6.
First steps in this direction have already been undertaken and the results are promising
[4, 7].

Second, we plan to include a trust management system. As soon as the whole Se-
mantic Web layer cake has been established, trust will probably be an important aspect
of Semantic Web applications. Thus, the KAON SERVER should support a developer in
reoccurring tasksin these aspects.

Finally, we consider research regarding the flexible handling of different types of Se-
mantic Web software entities, such as web services, peers or agents. On the one hand
this comprises easy integration of existing ones into the server, thus lifting the responsi-
bility of handling several different protocols off a developer. On the other hand, deployed
components ought to be offered also by web service, peer and agent protocols. This task
includes trandlating semantic descriptions accordingly.

Acknowledgements We would like to thank Marta Sabou, Vrije Universiteit Amster-
dam, and Debbie Richards, Macquarie University Sydney, for the fruitful cooperation.
Their work helped a great deal in designing the management ontology and component
descriptions. Also Sean Bechhofer from the University of Manchester who maintains the
OilEd ontology editor and invested great efforts for the KAON SERVER adaptation.

References

[1] Sean Bechhofer, Fact and oiled clients, WonderWeb Deliverable D10, Aug 2003,
http://wonderweb.semanticweb.org.

[2] Mark H. Burstein, Jerry R. Hobbs, Ora Lassila, David Martin, Drew V. McDermott,
Sheila A. Mcllraith, Srini Narayanan, Massimo Paolucci, Terry R. Payne, and Ka-
tiaP. Sycara, DAML-S. Web service description for the Semantic Web, The Seman-
tic Web - ISWC 2002, First International Semantic Web Conference, Sardinia, Italy,
June 9-12, 2002, Proceedings (lan Horrocks and James A. Hendler, eds.), Lecture
Notesin Computer Science, vol. 2342, Springer, 2002, pp. 348-363.

[3] Stefan Decker, Michael Erdmann, Dieter Fensel, and Rudi Studer, Ontobroker: On-
tology based access to distributed and semi-structured information, Database Se-
mantics - Semantic Issues in Multimedia Systems, |FIP Conference Proceedings,
vol. 138, Kluwer, 1998, pp. 351-369.

[4] Aldo Gangemi, Peter Mika, Marta Sabou, and Daniel Oberle, An ontology of
services and service descriptions, Tech. report, Laboratory for Applied Ontology
(ISTC-CNR), Viale Marx, 15, 00137 Roma, 2003.

[5] Alexander Maedche, Boris Motik, and Ljiljana Stojanovic, Managing multiple and
distributed ontologies in the semantic web, VLDB Journal 12 (2003), no. 4, 286—
302.

23

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

IST Project 2001-33052 Wonder\Web:
Ontology Infrastructure for the Semantic Web

Claudio Masolo, Stefano Borgo, Aldo Gangemi, Nicola Guarino, Alessandro Oltra-
mari, and Luc Schneider, The wonderweb library of foundational ontologies, Won-
derWeb Deliverable D15, Aug 2002, http://wonderweb.semanti cweb.org.

Peter Mika, Daniel Oberle, Aldo Gangemi, and Marta Sabou, Foundations for ser-
vice ontologies: Aligning owl-s to dolce, The Thirteenth International World Wide
Web Conference Proceedings, ACM, MAY 2004, pp. 563-572.

Boris Motik, KAON — the Karlsruhe Ontology and Semantic Web framework —
Developer’s guide for KAON 1.2.5, http://kaon.semanticweb.org, Feb 2003.

D. Oberle, M. Sabou, D. Richards, and R. Volz, An ontology for semantic middle-
ware: extending DAML-S beyond web-services, On The Move to Meaningful Inter-
net Systems 2003: OTM 2003Workshops, L ecture Notes in Computer Science, vol.
2889, Springer, 2003, pp. 28-29.

Daniel Oberle, Andreas Eberhart, Steffen Staab, and Raphael Volz, Developing and
managing software components in an ontology-based application server, Middle-
ware 2004, ACM/IFIP/USENIX 5th International Middleware Conference, Toronto,
Ontario, Canada, LNCS, Springer, 2004.

Daniel Oberle, Marta Sabou, and Debbie Richards, An ontology for semantic mid-
dleware: extending DAML-S beyond web-services, Tech. Report 426, University of
Karlsruhe, Institute AIFB, 76128 Karlsruhe, Germany, 2003.

Daniel Oberle, Steffen Staab, Rudi Studer, and Raphael Volz, Supporting applica-
tion development in the semantic web, ACM Transactions on Internet Technology
(TOIT) 4 (2004), no. 4.

Raphael Volz, Daniel Oberle, Steffen Staab, and Rudi Studer, Onto-
broker and ontoedit adaptation, WonderWeb Deliverable D9, Jul 2003,
http://wonderweb.semanticweb.org.

, Triple client, WonderWeb Deliverable D8, Jun 2003,
http://wonderweb.semanticweb.org.

24

