
IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

KAON SERVER Demonstrator

Daniel Oberle, Steffen Staab, Rudi Studer, Raphael Volz

University of Karlsruhe,
Institute for Applied Informatics and Formal Descriptions Methods (AIFB)

D-76128 Karlsruhe
email: {lastname}@aifb.uni-karlsruhe.de

Identifier Del 7

Class Deliverable

Version 1.1

Date 07-15-2004

Status Final

Distribution Public

Lead Partner AIFB

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

WonderWeb Project

This document forms part of a research project funded by the IST Programme of the Commission
of the European Communities as project number IST-2001-33052.

For further information about WonderWeb, please contact the project co-ordinator:

Ian Horrocks

The Victoria University of Manchester

Department of Computer Science

Kilburn Building

Oxford Road

Manchester M13 9PL

Tel: +44 161 275 6154

Fax: +44 161 275 6236

Email: wonderweb-info@lists.man.ac.uk

ii

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

Contents

Executive Summary 1

1 General Information 2
1.1 Relationship to KAON . 2
1.2 Obtaining KAON SERVER . 3
1.3 Java Package Overview . 3

2 Starting the server 4

3 Deploying components 5
3.1 Deployment in a client . 5
3.2 Manual (Hot) Deployment . 6
3.3 Defining Interceptors . 7
3.4 Association Management . 8

4 Discovering components 10
4.1 The ontology . 10
4.2 Component descriptions . 11
4.3 Automatic client-side discovery . 12
4.4 Viewing the registry’s contents . 13

5 Working with client-side surrogates 14
5.1 KAON Surrogates . 16

5.1.1 RemoteKAONConnection . 16
5.1.2 RemoteRDFFactory . 17

5.2 Other surrogates . 18

6 The Semantic Web Service Connector 18
6.1 Architecture . 19
6.2 Ontology Mapping . 20

7 OilEd Demonstrator 20

8 Conclusion 22

iii

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

Executive Summary

KAON SERVER can be considered as Application Server for the Semantic Web whose
design and development are based on existing Application Servers. However, we apply
and augment their underlying concepts for use in the Semantic Web and integrate semantic
technology within the server itself.

This deliverable describes a Demonstrator (KAON SERVER release 1.0) from a user’s
point of view. A detailed discussion of the server’s analysis, requirements, design and im-
plementation is given in [12]. A detailed discussion of the contribution to the Middleware
community is given in [10].

Part of this work has been done in cooperation with partners inside and outside Won-
derWeb. In particular, we are indebted to Marta Sabou, Vrije Universiteit Amsterdam,
The Netherlands, as well as Debbie Richards, MacQuarie University Syndney, Australia,
for their fruitful work on the ontology presented in section 4. Also Sean Bechhofer from
the University of Manchester who maintains the OilEd ontology editor and invested great
efforts for the KAON SERVER adaptation.

The new version 1.1 of this deliverable extends 1.0 by the following points:

• OilEd demonstrator (new Section 7)

• Semantic Web Service Connector (new Section 6)

• Association Management (Section 3.4)

• Interceptors (new section 3.3)

• Components update registry (section 3.2)

• Several bugfixes and general improvements

1

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

1 General Information

KAON SERVER can be considered as an Application Server for the Semantic Web (AS-
SW) facilitating reuse of existing software modules, e.g. ontology stores, editors, and
inference engines and, thus, the development and maintenance of comprehensive Seman-
tic Web applications. In [12] we describe analysis, design and implementation in detail,
[10] discusses the contribution for the Middleware community. The following subsec-
tions will document the KAON SERVER Demonstrator (release 1.0) from a user’s point
of view. In particular we will show how to install and start the server (section 2), how to
deploy (3) and discover components (4) and how to work with client-side surrogates (5).
Section 6 talks about the Semantic Web Services Connector that automatically generates
OWL-S descriptions, Section 7 about the OilEd demo. Conclusion and future work are
presented in section 8.

1.1 Relationship to KAON

KAON [5] is an open-source ontology management infrastructure targeted for semantics-
driven business applications. It includes a comprehensive tool suite allowing easy on-
tology management and application. Important focus of KAON is on integrating tra-
ditional technologies for ontology management and application with those used typi-
cally in business applications, such as relational databases. KAON is developed by
the Research Center for Information Technologies (FZI) and the Institute AIFB, both
at the University of Karlsruhe. For a detailed technical description please confer to
http://kaon.semanticweb.org as well as the KAON Developer’s Guide [8].

<any dir>
|- build
| |- kaon_build_root
| | | - apionrdf
| | | - ...
| |- kaon-ext_build_root
| | | - kaonserver
| | | - ...

...
|- kaon
| |- 3rdparty
| |- apionrdf
| |- apiproxy
| |- ...
|- kaon-ext
| |- 3rdparty
| |- kaonserver
| |- ...

KAON Extensions are a set of software modules that are optional to the KAON tool
suite but rely on it. In contrast to KAON, the modules in KAON Extensions are disjoint,

2

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

i.e. they do not rely on other modules within the project. However, they all rely at least
on the kaonapi module from the KAON project. Hence, for development, the whole
KAON project is required (please cf. [8]). Both projects should be checked out in parallel
resulting a file-structure like follows:

1.2 Obtaining KAON SERVER

KAON SERVER is part of KAON Extensions and works with Sun’s JDK 1.4.1 03 (avail-
able at http://java.sun.com/j2se/). Its source code, as well as released binaries
can be obtained from http://sourceforge.net/projects/kaon-ext, including pub-
lic CVS access.

The “kaonserver” module in KAON Extensions provides its own build.xml in the
corresponding directory (it includes common.xml where some global constants are de-
fined). The build file references some libraries from <any dir>/kaon/3rdparty and from
<any dir>/build/ kaon build root/<module-dir>/lib. The remaining libraries are stored
in <any dir>/kaon-ext/3rdparty.

A successful build results in a corresponding directory located at <any dir>/build/-
kaon-ext build root/kaonserver. The module features a source and binary distribution zip-
archive, javadocs, a copy of each required library and generated scripts. It is not required
to have the KAON project checked out when working with the binary distribution of the
KAON SERVER.

1.3 Java Package Overview

The Java packages of the kaonserver module are organized akin to the conceptual architec-
ture depicted in [12] (also cf. Figure 6), i.e. they are divided in components, management,
connectors and client where the latter holds all the client-side surrogates. We will explain
the packages below:

edu.unika.aifb.kaon.server Only holds the interface Constants which, as the name sug-
gests, contains all the constants required throughout the project. If a class needs
some constants, it just has to implement the interface. Also, there is the class Start-
Server that eventually becomes the start script.

edu.unika.aifb.kaon.server.client Contains all the client-side surrogates for components
written so far (hence the package name “client”). All surrogates are labelled Remote-
<original class name or component name>. See section 5 for a description of the
surrogates.

edu.unika.aifb.kaon.connectors Holds all the code of connector MBeans.

edu.unika.aifb.kaon.interceptors All the code related to Interceptors: an interface of
the same name, an AbstractInterceptor and prototypical AuditingInterceptor and
AuthenticationInterceptor.

edu.unika.aifb.kaon.management Holds system components that belong to the Man-
agement Core, i.e. the Component Loader as well as Association Management.

3

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

The Registry is a KAON ontology store, situated in the components package. The
Microkernel is implemented by JBoss JMX (Java Management Implementations)
MBeanServer, located in javax.management in jboss-jmx.jar.

edu.unika.aifb.kaon.components Contains classes and corresponding MBean interfaces
for all functional and proxy components written so far.

edu.unika.aifb.kaon.server.test Here one can find all the classes for test purposes. Note
that those are not maintained and might be outdated. However, the developer might
find ideas for his or her own client code.

2 Starting the server

In package edu.unika.aifb.kaon.server, the Java class StartServer bootstraps the server
with all connectors and the management core’s system components. In the build or bi-
nary release, there is a script automatically starting this class in <any dir>/build/kaon-
ext build root/kaonserver/release/bin/startserver.bat. You are required to start it from the
release/bin directory or a correct configuration of the KAON SERVER is not ensured.
Note that this script includes the invocation of the RMI registry which is required for the
RMI connector. If you don’t use the script but start the class Prototype manually, you
have to start the RMI registry with a proper classpath set to KAON SERVER’s classes.
The following enumeration lists what happens during start-up:

1. Creation of the Management Core

• Creation of the Kernel

• Deployment of the Registry

• Deployment of the Component Loader

• Deployment of the Association Management

2. Creation of the Connectors

• Deployment of the HTTP Adaptor GUI

• Deployment of the RMI Connector

• Deployment of the SOAP Connector

• Deployment of the Semantic Web Services Connector

3. Descriptions
An ontological description of every system component (situated in /resources/-
descriptions) is included in the registry (cf. 4).

4. Paths
Paths are being set for the component loader’s hot deployment directory and some
other configurations. It is important to have the working directory set to /release/bin
when calling the startserver.bat script.

4

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

After a successful start-up, the user may interact manually with the server by working
with the management console (http://localhost:8082) or view the contents of the
registry1. For the latter, KAON OIModeller [8] is required (cf. also section 4). Component
deployment and component discovery are discussed in the following sections.

Figure 1: Screenshot of HTTP Connector.

3 Deploying components

There are two ways of deploying a component to the server’s Microkernel. Typically, a
developer realizes deployment by explicit Java code in his or her client. Another option is
to manually deploy a component by copying a description file into a specified hot deploy-
ment directory. Both possibilities are supported by the component loader and discussed
in the following subsections.

3.1 Deployment in a client

Normally, a JMX developer would hard-code deployment in his or her code. Like shown
in the example below, a new javax.management.ObjectName has to be created and given
as argument to registerMBean together with the actual MBean. The MBean in our case is
a Sesame RDF store. Note that this method of deployment does whether enter the MBean
in the registry nor apply the association management.

1Note that the console is an evaluation version only, i.e. functionality is restricted.

5

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

ObjectName name =
new ObjectName("Functional Component:name=SesameStore");

server.registerMBean(sesame, name);

Thus, we developed the component loader system component for convenience. A
client application has to create a surrogate for it in a first step. After that, the deploy()
method takes an ontological description of the component which is automatically inserted
into the registry. Also, associations to other components are detected and automatically
applied by the Association Management System Component (cf. 3.4).

Properties props = new Properties();
props.put(CONNECTION, RMI);
props.put(RMI_HOST,"localhost");
props.put(RMI_PORT,"1099");
props.put(RMI_NAME,"/jmx/RMIConnector");
RemoteComponentLoader rcl
= new RemoteComponentLoader(props);

rcl.deploy("file:///SesameComponent.kaon");

The exemplary description file:///SesameComponent.kaon may look like below
and conforms to the registry’s ontology (cf. 4). In essence, a component’s description is
made up of instances.

<softwaremodule:SoftwareModule rdf:ID="Sesame">
<softwaremodule:presents rdf:resource="#SesameProfile"/>
<softwaremodule:implements rdf:resource="#SesameComponent"/>

</softwaremodule:SoftwareModule>

<semanticwebprofile:SesameStore rdf:ID="SesameProfile">
<softwaremodule:presentedBy rdf:resource="#Sesame"/>
<semanticwebprofile:queryLanguage>SeRQL</semanticwebprofile:queryLanguage>
<semanticwebprofile:supportsTransactions>No</semanticwebprofile:supportsTransactions>
<semanticwebprofile:persistent>No</semanticwebprofile:persistent>
<semanticwebprofile:persistent>None</semanticwebprofile:persistent>

</semanticwebprofile:SesameStore>

<implementation:ProxyComponent rdf:ID="SesameComponent">
<softwaremodule:implementedBy rdf:resource="#Sesame"/>
<implementation:hasCodeDetails rdf:resource="#SesameCodeDetails"/>

</implementation:ProxyComponent>

<implementation:CodeDetails rdf:ID="SesameCodeDetails">
<implementation:name>Proxy Component:name=Sesame</implementation:name>
<implementation:code>edu.unika.aifb.kaon.server.components.SesameComponent</implementation:code>
<implementation:version>1.0</implementation:version>

</implementation:CodeDetails>

3.2 Manual (Hot) Deployment

The component loader offers the possibility to define a directory which is periodically
being scanned for new description files. This directory can be set also via the manage-
ment console. Files with extensions “.kaon”, “.xml” and “.rdf” are regarded. Such files

6

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

have to contain a valid KAON description according to the management ontology and at
least one instance of the Component concept (or subconcepts thereof) like depicted in the
subsection above. Several component descriptions in a file are possible. 2

As soon as such a file is copied in the hot deployment directory, it is provided as
argument to the component loader’s deploy method that in turn registers and starts it and
also enters the description in the registry and apply the association management. When a
description file is moved or deleted the respective component(s) are undeployed. The hot
deployment directory is set to kaonserver/resources/hotdeploy as default.

For convenience, we came up with several copy-by-example descriptions for all func-
tional components available so far. All of them located in kaonserver/resources/descriptions.
They may just be moved to kaonserver/resources/hotdeploy for instant deployment.

In the new version of KAON SERVER, components update some information auto-
matically in the registry. This was necessary to keep information replica consistent both in
form of component class members and attributes in the registry. To give an example: if the
user opens a new model in RDFComponent (a KAON RDF store) then the corresponding
attribute in the registry is automatically updated.

3.3 Defining Interceptors

Interceptors are software entities that monitor a request and modify them. Typically, as-
pects orthogonal to any application are realized by interceptors, e.g. auditing, security or
transactions. They are a means to realize aspect oriented programming in the context of
JMX. The package edu.unika.aifb.kaon.server.interceptors defines an interface
Interceptor, an AbstractInterceptor as well as a prototypical AuditingInterceptor
and AuthenticationInterceptor.

Component Interceptor

AuditingInterceptor

AuthenticationInterceptor

firstInterceptor

nextInterceptor

...

Figure 2: Conceptual model for defining interceptors

Figure 2 shows how the interceptors are conceptually represented in the ontology
(cf. also Section 4). Every Component may be deployed with an arbitrary sequence of
Interceptors or specializations thereof. The example below depicts a concrete example
where a KAONRDFStoreComponent is deployed with 3 interceptors.

2Instead of the directory, component descriptions can also be loaded from a URL. A user can invoke the
component loader’s deploy method in the management console and provide the URL as string argument.

7

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

...

<implementation:FunctionalComponent
rdf:ID="KAONRDFStoreComponent">

<softwaremodule:implementedBy rdf:resource="#KAONRDFStore"/>
<implementation:hasCodeDetails rdf:resource="#KAONRDFStoreCodeDetails"/>
<implementation:firstInterceptor rdf:resource="#Interceptor1"/>

</implementation:FunctionalComponent>

...

<implementation:AuditingInterceptor rdf:ID="Interceptor1">
<implementation:logFile>c:\test.log</implementation:logFile>
<implementation:nextInterceptor rdf:resource="#Interceptor2"/>

</implementation:AuditingInterceptor>

<implementation:SecurityInterceptor rdf:ID="Interceptor2">
<implementation:nextInterceptor rdf:resource="#Interceptor3"/>

</implementation:SecurityInterceptor>

<implementation:AuditingInterceptor rdf:ID="Interceptor3">
<implementation:logFile>c:\test2.log</implementation:logFile>

</implementation:AuditingInterceptor>

The Component Loader detects such descriptions and constructs a proxy around the
actual MBean by means of java.lang.reflection where the Interceptor implemen-
tations play the role of invocation handlers containing the MBean. The preferred syntax
for components’ names with interceptors is “Functional Component:name=Sesame, in-
terceptor=auditing”.

The AuthenticationInterceptor is kept very simple just to give a proof of con-
cept. The provider deploys a component with such an interceptor along user and pass-
word. Surrogates are expected to transmit user and password with every invocation as last
two arguments (currently only RemoteSesame supports this). If authentication is valid the
interceptor removes user and password from the argument list and calls the actual method.

This approach is suboptimal as getAttribute and setAttribute methods cannot be ex-
tended by user and password in the arglist. Also the management console is actually not
allowed to perform invocations in this way. Another drawback of this approach is that user
and password are written in the registry. The deployer specifies both in the deployment
descriptor which is entered in the registry.

3.4 Association Management

Descriptions of components may feature ontological associations between components,
e.g. dependsOn, receivingEventsFrom, preventUnloading etc. The Association Manage-
ment System Component is there to put such associations into action. It mainly cooperates
with the Component Loader and the Registry. Regarding dependencies it plays a similar
role to org.jboss.system.ServiceController in the JBoss Application Server. However, As-
sociation Management subsumes its functionality as it is there to manage also other kinds
of associations and applies reasoning with the Registry.

The protocol for dependencies takes another approach than in JBoss. JBoss allows
dependencies only between ”Services” - we here allow dependencies between any kind
of component. Hence, the protocol is looser. We do not define a lifecycle for MBeans like
in JBoss. Instead, a component always is deployed, even though it is dependent on (not

8

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

yet deployed) components. Only unloading of components is forbidden when they are in
the dependency graph.

Protocol for deployment:

1. Component Loader (CL) enters description in registry

2. CL calls operationalizeAssociations at AssociationManagement (AM)

3. AM queries registry for associations (dependsOn, etc.)

4. AM reacts to those, e.g. by remembering the component name

Protocol for undeployment:

1. User/CL attempts to undeploy a component

2. before CL deletes contents from registry and undeploys it asks AM

3. Are there dependencies on the particular component?

4. If yes, exception is thrown; if no, undeployment is allowed

In v1.00, KAON SERVER is only able to operationalize “dependsOn”. One may
define the association in a description file as follows. The example below expresses that
a KAON ontology store relies on a KAON RDF store. Providing this description to the
Component Loader does not require any more actions from the client/developer.

...
<implementation:FunctionalComponent rdf:ID="KAONComponent">

<softwaremodule:implementedBy rdf:resource="#KAONOntologyStore"/>
<implementation:hasCodeDetails rdf:resource="#KAONOntologyStoreCodeDetails"/>
<implementation:dependsOn rdf:resource="file:/c:/descriptions/KAONRDFComponent.kaon#KAONRDFComponent"/>

</implementation:FunctionalComponent>
...

The drawback of this approach is that the identifying URI of the corresponding Com-
ponent instance has to be known in advance. In most cases a client would query the
registry at runtime for this URI and use the Association Management’s surrogate to apply
the dependency.

Map parameters=new HashMap();
parameters.put(
edu.unika.aifb.kaon.server.client.RemoteKAONConnection.SERVER_URI,
"mbean://RMI@localhost:1099/jmx/RMIConnector/System%20Component?name=Registry"
);

RemoteRegistry m_registry = new RemoteRegistry(parameters);
RemoteAssociationManagement m_am = new RemoteAssociationManagement(parameters);

m_am.addDependency(
m_registry.getComponentURL("Functional Component:name=KAONOntoStore"),
m_registry.getComponentURL("Functional Component:name=KAONRDFStore")
);

...

m_am.releaseAssociations("Functional Component:name=KAONOntoStore");

9

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

Calling releaseAssociations on the Association Management will allow undeployment
of the depending components again. If the user tries to undeploy a depending component
by moving a description file out of the hotdeploy directory, the file is moved. However, the
component remains deployed, the descriptions remains in the registry and the association
remains. One has to invoke releaseAssociation on Association Management, unregister
on RemoteMBeanServer and deleteDescription on Registry.

4 Discovering components

The registry, which is a simple ontology store, and its ontology play a central role in
KAON SERVER. We are using the apionrdf implementation of the KAON API, i.e. the
main memory transient version, as ontology store. Components can be described accord-
ing to the management ontology and those descriptions can be given as argument to the
Component Loader which in turn enters them in the registry. A client may discover a
component it is in need of by querying the registry. All of that functionality is described
in this section.

4.1 The ontology

KAON SERVER uses a management ontology as detailed in [9, 11, 10]. It takes a similar
design to OWL-S [2] but has been adapted to describe software modules instead of web
services. Figure 3 shows the ontology design in contrast to OWL-S.

OWL-S Service

Profile

WSDL

Software Module

IDL GroundingOWL-S Profile’

IDL

Web-services Software Modules

API Description

Implementation

Semantic Web
API Description

Semantic Web
Profiles

Generality

Type of

Software Entiity

D
o
m

a
in

In
te

rm
ed

ia
te

S
em

a
n
tic

S
yn

ta
ctic

D
escrip

tio
n

D
escrip

tio
n

(sub)ontology

Domain Ontology

uses ontology

Process Grounding

Figure 3: KAON SERVER’s ontology

Each of the sub-ontologies is modelled in the KAON language and shipped with the
distribution. The global logical namespace always starts with http://kaon.semanticweb.
org/kaon/server. The logical URI of the registry is http://kaon.semanticweb.org/
kaon/server/registry which is basically an empty KAON OIModel that includes the
http://kaon.semanticweb.org/kaon/server/registryscheme. The latter includes

10

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

all the subontologies listed below. This inclusion structure allows us to include component
descriptions at run-time more easily. PhysicalURIs are usually logicalURI + “.kaon”.

Software Module /resources/ontology/softwaremodule.kaon

Profile /resources/ontology/profile.kaon

API Description /resources/ontology/apidescription.kaon

IDL Grounding /resources/ontology/idlgrounding.kaon

Implementation /resources/ontology/implementation.kaon

IDL /resources/ontology/idl.kaon

Semantic Web Profile /resources/ontology/semanticwebprofile.kaon

Semantic Web API Description /resources/ontology/semanticwebapidescription.
kaon

4.2 Component descriptions

The component loader (cf. 3) offers the possibility to deploy a component by means of an
ontological description. Such a description basically features one instance of the Software
Module concept. Technically, this description is stored in a KAON file that includes the
registry. Below, we list an exemplary description for a Description Logic reasoner:

<?xml version=’1.0’ encoding=’UTF-8’?>

<!DOCTYPE rdf:RDF [
<!ENTITY rdf ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’>
<!ENTITY registry ’http://kaon.semanticweb.org/kaon/server/registryscheme#’>
<!ENTITY softwaremodule ’http://kaon.semanticweb.org/kaon/server/softwaremodule#’>
<!ENTITY profile ’http://kaon.semanticweb.org/kaon/server/profile#’>
<!ENTITY apidescription ’http://kaon.semanticweb.org/kaon/server/apidescription#’>
<!ENTITY idlgrounding ’http://kaon.semanticweb.org/kaon/server/idlgrounding#’>
<!ENTITY idl ’http://kaon.semanticweb.org/kaon/server/idl#’>
<!ENTITY implementation ’http://kaon.semanticweb.org/kaon/server/implementation#’>
<!ENTITY semanticwebprofile ’http://kaon.semanticweb.org/kaon/server/semanticwebprofile#’>
<!ENTITY semanticwebapidescription ’http://kaon.semanticweb.org/kaon/server/semanticwebapidescription#’>

]>

<?include-rdf
logicalURI="http://kaon.semanticweb.org/kaon/server/registryscheme"
physicalURI="file:/C:/Dev/KAON-ext/kaonserver/resources/ontologies/registryscheme.kaon"?>

<rdf:RDF
xmlns="®istry;"
xmlns:rdf="&rdf;"
xmlns:softwaremodule="&softwaremodule;"
xmlns:profile="&profile;"
xmlns:apidescription="&apidescription;"
xmlns:idlgrounding="&idlgrounding;"
xmlns:idl="&idl;"
xmlns:implementation="&implementation;"
xmlns:semanticwebprofile="&semanticwebprofile;"
xmlns:semanticwebapidescription="&semanticwebapidescription;"

>

11

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

The header of each description always starts with the definition and abbreviation of
the required sub-ontologies’ namespaces (as listed above) and the inclusion of registry-
scheme.

softwaremodule:SoftwareModule rdf:ID="DIGReasoner">
<softwaremodule:presents rdf:resource="#DIGReasonerProfile"/>
<softwaremodule:implements rdf:resource="#DIGReasonerComponent"/>

</softwaremodule:SoftwareModule>

<semanticwebprofile:DIGReasoner rdf:ID="DIGReasonerProfile">
<softwaremodule:presentedBy rdf:resource="#DIGReasoner"/>
<semanticwebprofile:language>SHIQ</semanticwebprofile:language>
<semanticwebprofile:actualReasoner>FaCT</semanticwebprofile:actualReasoner>
<semanticwebprofile:holdsOntology>none</semanticwebprofile:holdsOntology>
<semanticwebprofile:url>http://xyz</semanticwebprofile:url>

</semanticwebprofile:DIGReasoner>

<implementation:ProxyComponent rdf:ID="DIGReasonerComponent">
<softwaremodule:implementedBy rdf:resource="#DIGReasoner"/>
<implementation:hasCodeDetails rdf:resource="#DIGReasonerCodeDetails"/>

</implementation:ProxyComponent>

Central to each description is an instance of SoftwareModule which presents a Profile
(in this case a specialization thereof located in the Semantic Web Profiles sub-ontology)
and implements a SoftwareModuleImplementation (which is again specialized in this ex-
ample). It is important to include the inverse properties presentedBy and implementedBy
for querying.

<implementation:CodeDetails rdf:ID="DIGReasonerCodeDetails">
<implementation:name>Proxy Component:name=DIG Reasoner</implementation:name>
<implementation:code>edu.unika.aifb.kaon.server.components.DIGComponent</implementation:code>
<implementation:version>1.0</implementation:version>

</implementation:CodeDetails>

</rdf:RDF>

The CodeDetails belong to the SoftwareModuleImplementation and are basically a
conceptualization of the JMX MLET tags. Every MBean is attributed by —code—
(the class name), —object— (a filename that contains a serialization of the MBean),
—archive— (a list of .jar files), —codebase—, —name— (the MBean’s ID), —version—
and —arglist— (parameters for the MBean’s constructor). All of them became attributes
of CodeDetails with —archive— pointing to an instance of the newly introduced Archive
concept. The latter features a transitive association requiresArchive that helps the compo-
nent loader in computing all the necessary libraries.

4.3 Automatic client-side discovery

The registry’s surrogate (RemoteRegistry) basically wraps a RemoteKAONConnection
(cf. section 5.1.1) to the main-memory based KAON API component deployed to the
kernel and offers some convenience methods for interaction.

Typically a client is interested in components of a certain type, e.g. ones that con-
form to the DIG3 interface. The getComponentIDs() method provides this functionality.

3Description Logics Implementation group. Currently, FaCT and Racer conform to this interface.

12

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

For convenience, only the name of the desired concept (as defined in the Semantic Web
Profiles sub-ontology) has to be given as argument. After retrieving the component IDs
in a Collection, the client might choose which one to use by having a closer look at their
profiles. A component ID is fed into getProfileInfo() for this purpose. The client might
display them to the user or choose automatically according to some criteria. A surrogate
can now be constructed by providing it the component ID. Below we give an example for
discovering DIG Reasoners4.

//Create Surrogate RemoteRegistry
Map parameters=new HashMap(); parameters.put(SERVER_URI,
"mbean://RMI@localhost:1099/jmx/RMIConnector/
System%20Component?name=Registry");

RemoteRegistry registry = new RemoteRegistry(parameters);

//Get Component IDs of all deployed DIGReasoners
Collection ids = registry.getComponentIDs("DIGReasoner");
if (ids.isEmpty()) {

System.out.println("No DIGReasoners deployed");
} else {

Iterator test = ids.iterator();
while (test.hasNext()) {

String componentid = (String)test.next();
//something like "Proxy Component:name=Fact"
//Listing properties for componentid for user to choose
//get profile properties of component
//(representationLanguage, ontology etc.)
HashMap props = registry.getProfileInfo(componentid);
for (Iterator temp=props.entrySet().iterator();temp.hasNext();) {

Map.Entry me = (Map.Entry) temp.next();
System.out.println("\t\tProperty:"+(String)me.getKey()+",
Value:"+(String)me.getValue());

}
}

//choose component by graphical user interface or automatically
String choice = ...

//construct surrogate
RemoteReasoner proxy = new RemoteReasoner(server,choice);

4.4 Viewing the registry’s contents

One can use KAON’s OIModeler graphical user interface to browse the registry’s cur-
rent contents (see Figure 4). In the “Open OIModel” dialog choose “Other” and enter
as physicalURI (the query part is the UTF-8 encoded originalphysicalURI, see section
5.1.1):

4cf. edu.unika.aifb.kaon.server.test.DiscoveryTest

13

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

mbean://localhost:1099?file%3A%2F%2F<path>%2F\resources%2F\ontologies%
2Fregistry.kaon

Additionally, the connection parameters SERVER URI and KAON CONNECTION
must be provided as discussed in section 5.1.1. Note that kaonserver-client.jar has to be
in OIModeller’s class path.

Every description file that is provided to the component loader’s deploy method will be
included by /resources/ontologies/registry.kaon at runtime. It will be excluded
when the component is undeployed.

Figure 4: Browsing the registry

5 Working with client-side surrogates

As introduced in [12], surrogates are client-side objects that reveal the API of particular
components residing within the KAON SERVER and relay communication to them (sim-
ilar to stubs in CORBA). The idea of a surrogate is to relieve the developer of tunneling
all method-calls to an MBean via MBeanServer.invoke(). Instead, the developer should
be put in a position equal to working with the software module directly. All surrogates
are located in edu.unika.aifb.kaon.server.client, they are labelled Remote<original class
name or component name>.

14

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

Surrogates work with connector components which have to be provided to the con-
structor in the form of java.util.properties. The following table gives an overview of
possible connectors and their properties (all of them defined in edu.unika.aifb.kaon.-
server.Constants). At the moment, there are three connectors: a local connector, a SOAP
and a RMI connector. Besides the connection parameters, every surrogate has to be pro-
vided the name of an MBean. This name is typically discovered by querying the registry
(cf. section 4).

CONNECTION Parameters Possible Values
LOCAL No other parameters required -
SOAP SOAP HOST Hostname of SOAP connector,

default:localhost
SOAP PORT Portnumber of SOAP connector,

i.e. KAON SERVER’s host,
default:8085

SOAP NAME Name of the WSDL-description,
e.g. soapconnector

SOAP PATH Path of the WSDL-description,
e.g. jmx

RMI RMI HOST Hostname of RMI connector,
i.e. KAON SERVER’s host,
default:localhost

RMI NAME Name of the RMI connector,
default:jmx/RMIConnector

RMI PORT Portnumber of RMI host,
default: 1099

We already gave an example of constructing a surrogate using the RMI connector in
section 3. Additionally, we will demonstrate how to construct the properties required for
the surrogate “RemoteClient” which relays communication to the Ontobroker [3] proxy
component [13] by using a SOAP connector. Its constructor takes the property list as well
as the name of the MBean as argument. After instantiation the client is able to work with
Ontobroker by using the surrogate object.

Properties props = new Properties();
props.put(CONNECTION,SOAP);
props.put(TYPE, MGMT);
props.put(SOAP_HOST, "localhost");
props.put(SOAP_PORT, "8085");
props.put(SOAP_PATH, "jmx");
props.put(SOAP_NAME, "soapconnector");
RemoteClient ontobroker=
new RemoteClient(props,"Proxy Component:name=Ontobroker");

15

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

Note, that there also is a surrogate for the MBeanServer itself to interact directly with
the kernel. Typically, all the other surrogates, like RemoteClient above, use RemoteM-
BeanServer to translate their calls to the MBeanServer’s invoke method.

5.1 KAON Surrogates

KAON API and KAON RDF API implementations have been made deployable and sur-
rogates have been developed, too. The surrogates themselves implement the KAON API
and KAON RDF API respectively and relay communications to KAON API and KAON
RDF API implementations deployed to the KAON SERVER. Thus, there is an additional
indirection with KAON SERVER in between. Relevant prefix for the API implementa-
tions’ physicalURIs is “mbean://”

5.1.1 RemoteKAONConnection

The RemoteKAONConnection implements a KAONConnection for KAON SERVER. On
the server side, the actual KAONConnection is deployed as an MBean. PhysicalURIs for
this kind of connection take the following syntax:

mbean://HOST?originalphysicalURI

The scheme mbean is important for RemoteKAONConnection to determine whether it
is capable of handling this physical URI. Host is only used as a dummy and does not carry
information. The parameter for the remote connection are encoded in the SERVERU RI.
The originalphysicalURI is the physicalURI of the KAONConnection wrapped by the
MBean (file, http, jboss, direct etc.). Note, that the originalphysicalURI has to be UTF-8
encoded. This is achieved by the following code

new URI("mbean://<host>[:<port>]" +
URLEncoder.encode(<original-physical-URI> ,"UTF-8"));

RemoteKAONConnection needs a SERVER URI as additional parameter that holds
the information needed to connect to the MBeanServer. It takes the following syntax:

mbean://CONNECTION@HOST:PORT/PATH/JMX-DOMAIN?JMX-ATTR-LIST

where

CONNECTION is either LOCAL, RMI or SOAP

HOST is either localhost,RMI HOST or SOAP HOST

PORT is either 0,RMI PORT or SOAP PORT

16

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

PATH is either RMI NAME or SOAP NAME

JMX-DOMAIN is the domain of the MBean

JMX-ATTR-LIST are the attributes of the MBean’s JMX name

For example, a typical SERVERU RI with SOAP access would look like the following
mbean://SOAP@localhost:8085/jmx/soapconnector/example?Functional%20Component-
=KAONComponent1. In addition to the SERV ER URI, the KAON CONNECT ION pa-
rameter must be set to edu.unika.ai f b.kaon.server.client.RemoteKAONConnection.

5.1.2 RemoteRDFFactory

An implementation of the RDF factory for remote models residing in the KAON SERVER.
Relevant prefix for this kind of physicalURI is “mbean”. All information required to ad-
dress the remote MBeanServer is encoded in the physicalURI:

mbean://CONNECTION@HOST:PORT/PATH/JMX-DOMAIN?JMX-ATTR-LIST

where

CONNECTION is either LOCAL, RMI or SOAP

HOST is either localhost,RMI HOST or SOAP HOST

PORT is either 0,RMI PORT or SOAP PORT

PATH is either RMI NAME or SOAP NAME

JMX-DOMAIN is the domain of the MBean

JMX-ATTR-LIST are the attributes of the MBean’s JMX name

For example, a typical physical URI with SOAP access would look like the following
mbean://SOAP@localhost:8085/jmx/soapconnector/example?Functional%20Component-
=RDFComponent1

Within RemoteRDFFactory’s methods, this URI would be parsed into a valid JMX-
name “Functional Component:name=RDFComponent1” to address the MBean within the
server. All the other information is required to instantiate the SOAPConnector. Before
using this surrogate, the factory should be registered with the RDFManager:

RDFManager.registerFactory("edu.unika.aifb.kaon.
server.client.RemoteRDFFactory");

17

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

5.2 Other surrogates

Within the current KAON SERVER distribution there are several other surrogates that
mostly coincide with the adaptation of existing software modules. Most of them are
described in other WonderWeb deliverables:

RemoteRDFGeneric This surrogate features the most basic methods that are common
to RDF stores. It can be used in conjunction with the KAON RDF API Component
and the Sesame Component.

RemoteSesame Surrogate for the Sesame RDF store [14]. In version 1.0 this surro-
gate has been updated with regards to security issues. It is now expected that the
provider deploys his SesameComponent to the KAON SERVER with user, pass-
word and server URL already set. Therefore, the surrogate and thus the client do
not have to deal with the credentials except an Authentication Interceptors is explic-
itly deployed. It also the only surrogate that is able to work with the prototypical
Authentication interceptor so far.

RemoteReasoner Surrogate for DIG Reasoners [1].

RemoteClient Surrogate for Ontobroker [13].

RemoteRegistry Surrogate for the registry (cf. 4).

RemoteComponentLoader Surrogate for the component loader (cf. 3)

RemoteAssociationManagement Surrogate for the Association Management (cf. 3.4)

RemoteMBeanServer Surrogate for the kernel, i.e. the MBeanServer.

6 The Semantic Web Service Connector

The Semantic Web Service Connector (SWSConnector) provides a flexible mechanism to
access the methods of any deployed MBean by the SOAP protocol along corresponding
WSDL and OWL-S descriptions.

The connector uses the GLUE5 Web Services engine to handle SOAP requests/ re-
sponses and the automatic generation of the corresponding WSDL descriptions. While
generating the WSDL with a given interface requires online two lines of code, routing
incoming SOAP requests to the actual MBean necessitates an indirection. This is due to
the fact that every request has to be routed through the MBeanServer. Hence, we had to
come up with a reflection proxy that reveals the MBean’s interface and does the corre-
sponding routing. OWL-S is finally generated by using the OWL-S API6 and additionally
information stemming from the registry.

5http://www.webmethods.com
6http://www.mindswap.org/2004/owl-s/api/

18

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

6.1 Architecture

Figure 5 shows the steps that lead to the publishing of a WSDL and OWL-S description.
The SWSConnector and its GLUE SOAP engine are able to publish several MBeans at
once. Also, the connector applies the Association Management, i.e. when an MBean is
published as Semantic Web Service it must not be undeployed.

Authentication

Other

SWS

RMI Other

Authorization Auditing Other

F
u
n
c
ti
o
n
a
l

C
o
m

p
o
n
e
n
t

1

KernelRegistry
Association

Management

...

F
u
n
c
ti
o
n
a
l

C
o
m

p
o
n
e
n
t

n

... ...P
ro

x
y

C
o
m

p
o
n
e
n
t

1

P
ro

x
y

C
o
m

p
o
n
e
n
t

m

WSDLOWL-S

GLUE

(2) publish

(1) inspect

(3) generate

Figure 5: Process of publishing.

The client or user first provides an MBean ID to the publish method together with an
URL path identifier, e.g. “Proxy Component:name=Sesame” and “sws”. In step (1) the
connector inspects the specified MBean and provides an invocation handler to its SOAP
engine. The invocation handler translates every incoming request into respective calls
to the MBeanServer which are routed to the specified MBean. The WSDL description is
automatically derived by using Java reflection and published (2). Next, the OWL-S API is
used to generate a simple OWL-S description derived from the WSDL description. That
comprises the grounding in particular, but also basic profile and process information (3).
Additional information is taken from the MBean’s description in the registry. Although
that could enrich the OWL-S description significantly, we encountered several difficulties
that are due to ontology mapping (see next subsection).

The whole process results in http://localhost:8090/sws/sesame as the Web Ser-
vice’s URI with http://localhost:8090/sws/sesame.wsdland http://localhost:
8090/sws/sesame.owls be ing the URIs of the WSDL and OWL-S description, respec-
tively.

19

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

6.2 Ontology Mapping

First of all, every method of an MBean becomes a separate service with profile, process
model (with one AtomicProcess that represents the method) and grounding. Regarding
the mapping from the registry’s information to the OWL-S description, the SWS Connec-
tor behaves as follows:

• “serviceName” in registry is copied

• “textDescription” is copied, if not existing, default description is generated

• “Actor” instance with corresponding attributes (“webURL”, “title”, “fax”, “email”,
“phone”, “physicalAddress”) is copied and instantiated only once but referenced by
each service.

• “serviceParameters” (i.e. “representationLanguage”, “model”, “serverURL” etc.)
are copied. A new instance is created and referenced by all services with “sParam-
eter” pointing the original parameter’s value and “serviceParameterName” getting
the name of the property as value. Thus, the subproperty-relationship is lost.

Further information could be leveraged. However, it would require cumbersome map-
ping of ontological information at run-time. As long as there is no ontology mapping
language (such as XSLT for XML) the mapping would have to be hard-coded. In our
opinion, this is a clear use-case for applying a foundation ontology. Both ontologies
would have to be aligned to a common “roof” to facilitate the reuse of component and
service descriptions. Below we list information that is lost due to that problem:

• Semantic Web Profile: In KAON SERVER’s ontology we subclass Profile to “RDF-
Store”, “OntologyStore”, “Reasoner” etc. with specified ServiceParameters. Such
information could be used in the OWL-S profile also.

• Semantic Web API Description: components’ APIs along their methods and param-
eters are described in the registry. We could reuse such information in the process
model to further specify processes, as well as their inputs and outputs.

7 OilEd Demonstrator

The OilEd demonstration shows how KAON SERVER can be used to facilitate the de-
velopment of Semantic Web applications. OilEd is both a DAML+OIL and OWL ontol-
ogy editor. Instead of loading a saving an ontology from a file, this version connects to
the KAON SERVER, queries the registry for available RDF stores, lets the user choose
one and loads/saves the contents from/into that store. Currently KAON RDF stores and
Sesame are supported, others are possible. In a similar fashion, OilEd makes use of de-
ployed reasoners rather than instantiating a local reasoner for every classification. Thus,
we increase flexibility and reuse towards a programming in the large (aka megaprogram-
ming) which is typically required for Semantic Web applications. Any store or reasoner
can be deployed or undeployed at runtime.

20

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

Figure 6: OilEd as a client acting upon KAON SERVER.

Like depicted in Figure 6, OilEd works with both a generic RDF surrogate and a
generic reasoner surrogate. The first is able to relay communication to KAON RDF stores
and Sesame. The latter is able to talk to FaCT and Racer. At run time, OilEd queries the
registry for deployed RDF store and reasoners, respectively. Subsumption reasoning is
automatically applied and the result (in the form of component IDs) returned. The user
may choose one of them and may view their according metadata.

Note that the loading and saving only works with OWL-DL ontologies, i.e. RDF
serializations thereof. The ontologies must validate according to the OWL Validator as
it is used within OilEd itself. When loading and saving across different stores one might
encounter problems which are due to the different XML/RDF parsers used in OilEd and
in the stores. On the one hand, this clearly hinders interoperability. On the other hand,
such a situation could be overcome by writing a flexible interceptor deployed on top of
every RDF store. It would monitor source and destination of XML/RDF streams and
could reparse and reserialize to circumvent such problems. The following configuration
has been tested:

21

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

1. Start KAON SERVER

2. Deploy stores and reasoners
This is done by moving the description files (shipped with the OilEd distribution in
/descriptions) into the hotdeploy directory of KAON SERVER. Others are possible,
of course.

3. Assumptions

• KAONRDFComponent.kaon
The model and value attributes should be the file-URL for test.owl which is
in the ontologies directory of OilEd. Other OWL-DL ontologies that can be
loaded into KAON RDF stores and OilEd are possible.

• SesameComponent.kaon
Assumes that Sesame is running @ localhost:8080/sesame, and that it ac-
cesses mem-rdf-db. Currently, the OilEd code does not allow to chose repos-
itories. Chosen will be the one that is specified here with hardwired tes-
tuser:opensesame.

• FaCT.kaon
The description file assumes that FaCT runs on http://localhost:8080/dig. Tom-
cat should be started before the proxy component is deployed. The URL can
be changed, of course.

• Racer.kaon
Like FaCT but on port 8081.

4. Start OilEd 3.5.7d and load from repository (loading from KAONRDFStore has
been tested successfully)

5. Edit your ontology
Classify the ontology This is done by clicking on ”DIG”. OilEd queries the KAON
SERVER for available DIG reasoners and lets the user chose.

6. Save your ontology (Sesame has been tested successfully, saving back into KAON
RDF stores yields a parser error)

8 Conclusion

This deliverable presented the KAON SERVER Demonstrator from a user’s point of view.
We discuss analysis, requirements, design and implementation in [12] as well as the con-
tribution to the Middleware community in [10]. The largest part of the design has been
implemented along several adaptations of existing software [1, 13, 14].

In the more distant future several research questions and tasks arise. First of all,
we plan to align KAON SERVER’s ontology to the DOLCE foundational ontology [6].
The current ontology is based on OWL-S [9] and suffers conceptual ambiguity, lacks
concise axiomatization, is designed too loosely and has a narrow scope. We might be

22

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

able to overcome those shortcomings by such an alignment. Also, the mapping between
component and service descriptions will be facilitated by that as discussed in section 6.
First steps in this direction have already been undertaken and the results are promising
[4, 7].

Second, we plan to include a trust management system. As soon as the whole Se-
mantic Web layer cake has been established, trust will probably be an important aspect
of Semantic Web applications. Thus, the KAON SERVER should support a developer in
reoccurring tasks in these aspects.

Finally, we consider research regarding the flexible handling of different types of Se-
mantic Web software entities, such as web services, peers or agents. On the one hand
this comprises easy integration of existing ones into the server, thus lifting the responsi-
bility of handling several different protocols off a developer. On the other hand, deployed
components ought to be offered also by web service, peer and agent protocols. This task
includes translating semantic descriptions accordingly.

Acknowledgements We would like to thank Marta Sabou, Vrije Universiteit Amster-
dam, and Debbie Richards, Macquarie University Sydney, for the fruitful cooperation.
Their work helped a great deal in designing the management ontology and component
descriptions. Also Sean Bechhofer from the University of Manchester who maintains the
OilEd ontology editor and invested great efforts for the KAON SERVER adaptation.

References

[1] Sean Bechhofer, Fact and oiled clients, WonderWeb Deliverable D10, Aug 2003,
http://wonderweb.semanticweb.org.

[2] Mark H. Burstein, Jerry R. Hobbs, Ora Lassila, David Martin, Drew V. McDermott,
Sheila A. McIlraith, Srini Narayanan, Massimo Paolucci, Terry R. Payne, and Ka-
tia P. Sycara, DAML-S: Web service description for the Semantic Web, The Seman-
tic Web - ISWC 2002, First International Semantic Web Conference, Sardinia, Italy,
June 9-12, 2002, Proceedings (Ian Horrocks and James A. Hendler, eds.), Lecture
Notes in Computer Science, vol. 2342, Springer, 2002, pp. 348–363.

[3] Stefan Decker, Michael Erdmann, Dieter Fensel, and Rudi Studer, Ontobroker: On-
tology based access to distributed and semi-structured information, Database Se-
mantics - Semantic Issues in Multimedia Systems, IFIP Conference Proceedings,
vol. 138, Kluwer, 1998, pp. 351–369.

[4] Aldo Gangemi, Peter Mika, Marta Sabou, and Daniel Oberle, An ontology of
services and service descriptions, Tech. report, Laboratory for Applied Ontology
(ISTC-CNR), Viale Marx, 15, 00137 Roma, 2003.

[5] Alexander Maedche, Boris Motik, and Ljiljana Stojanovic, Managing multiple and
distributed ontologies in the semantic web, VLDB Journal 12 (2003), no. 4, 286–
302.

23

IST Project 2001-33052 WonderWeb:

Ontology Infrastructure for the Semantic Web

[6] Claudio Masolo, Stefano Borgo, Aldo Gangemi, Nicola Guarino, Alessandro Oltra-
mari, and Luc Schneider, The wonderweb library of foundational ontologies, Won-
derWeb Deliverable D15, Aug 2002, http://wonderweb.semanticweb.org.

[7] Peter Mika, Daniel Oberle, Aldo Gangemi, and Marta Sabou, Foundations for ser-
vice ontologies: Aligning owl-s to dolce, The Thirteenth International World Wide
Web Conference Proceedings, ACM, MAY 2004, pp. 563–572.

[8] Boris Motik, KAON — the Karlsruhe Ontology and Semantic Web framework —
Developer’s guide for KAON 1.2.5, http://kaon.semanticweb.org, Feb 2003.

[9] D. Oberle, M. Sabou, D. Richards, and R. Volz, An ontology for semantic middle-
ware: extending DAML-S beyond web-services, On The Move to Meaningful Inter-
net Systems 2003: OTM 2003Workshops, Lecture Notes in Computer Science, vol.
2889, Springer, 2003, pp. 28–29.

[10] Daniel Oberle, Andreas Eberhart, Steffen Staab, and Raphael Volz, Developing and
managing software components in an ontology-based application server, Middle-
ware 2004, ACM/IFIP/USENIX 5th International Middleware Conference, Toronto,
Ontario, Canada, LNCS, Springer, 2004.

[11] Daniel Oberle, Marta Sabou, and Debbie Richards, An ontology for semantic mid-
dleware: extending DAML-S beyond web-services, Tech. Report 426, University of
Karlsruhe, Institute AIFB, 76128 Karlsruhe, Germany, 2003.

[12] Daniel Oberle, Steffen Staab, Rudi Studer, and Raphael Volz, Supporting applica-
tion development in the semantic web, ACM Transactions on Internet Technology
(TOIT) 4 (2004), no. 4.

[13] Raphael Volz, Daniel Oberle, Steffen Staab, and Rudi Studer, Onto-
broker and ontoedit adaptation, WonderWeb Deliverable D9, Jul 2003,
http://wonderweb.semanticweb.org.

[14] , Triple client, WonderWeb Deliverable D8, Jun 2003,
http://wonderweb.semanticweb.org.

24

